×

The ring of sections of a complete symmetric variety. (English) Zbl 1055.14052

The main object of the paper under review is the wonderful completion \(X\) of a symmetric variety \(G/H\) constructed by C. De Concini and C. Procesi [in: Invariant theory, Lect. Notes Math. 996, 1–44 (1983; Zbl 0581.14041)] (\(G\) is an adjoint semisimple group, \(H\) is the fixed subgroup of an involutive automorphism of \(G\)). The authors study the ring of sections \(A(X):=\bigoplus_{L\in \text{Pic}(X)}H^0(X,L)\) and construct a standard monomial theory for this ring. This can be viewed as a generalization of Littelman’s theory (where \(H=P\) is a parabolic subgroup and no completion is needed). As an application, the authors construct a degeneration of \(A(X)\) to the coordinate ring of the product of a multicone over a flag variety and an affine space (that, in particular, implies that \(A(X)\) has rational singularities). Some of intermediate results are interesting by their own, for example, an explicit description of a basis of \(\text{Pic}(X)\) in terms of spherical weights and a generalization of the Parthasarathy-Ranga Rao-Varadarajan conjecture [K. R. Parthasarathy, R. Ranga Rao and V. S. Varadarajan, Bull. Am. Math. Soc. 72, 522–525 (1966; Zbl 0178.16802)].

MSC:

14M17 Homogeneous spaces and generalizations
14M15 Grassmannians, Schubert varieties, flag manifolds
14L30 Group actions on varieties or schemes (quotients)

References:

[1] Boutot, J.-F., Singularités rationnelles et quotients par les groupes réductifs, Invent. Math., 88, 1, 65-68 (1987) · Zbl 0619.14029
[2] Chirivı̀, R., LS algebras and application to Schubert varieties, Transform. Groups, 5, 3, 245-264 (2000) · Zbl 1019.14019
[3] Chirivı̀, R., Deformation and Cohen-Macaulayness of the multicone over the flag variety, Comment. Math. Helv., 76, 436-466 (2001) · Zbl 1074.14529
[4] De Concini, C.; Procesi, C., Complete symmetric varieties, (Invariant Theory. Invariant Theory, Lecture Notes in Math., 996 (1983), Springer-Verlag), 1-44 · Zbl 0581.14041
[5] De Concini, C.; Springer, T. A., Compactification of symmetric varieties, Transform. Groups, 4, 2-3, 273-300 (2000) · Zbl 0966.14035
[6] Elkik, R., Singularités rationnelles et déformations, Invent. Math., 47, 2, 139-147 (1978) · Zbl 0363.14002
[7] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces (1978), Academic Press · Zbl 0451.53038
[8] Kannan, S. S., Projective normality of the wonderful compactification of semisimple adjoint groups, Math. Z., 239, 4, 673-682 (2002) · Zbl 0997.14012
[9] Kempf, G. R.; Ramanathan, A., Multi-cones over Schubert varieties, Invent. Math., 87, 2, 353-363 (1987) · Zbl 0615.14028
[10] Kumar, S., Proof of the Parthasarathy-Ranga Rao-Varadarajan conjecture, Invent. Math., 93, 117-130 (1988) · Zbl 0668.17008
[11] Lakshmibai, V.; Littelmann, P.; Magyar, P., Standard monomial theory and applications, (Representation Theories and Algebraic Geometry, Montreal, PQ, 1997 (1998), Kluwer: Kluwer Dordrecht), 319-364 · Zbl 1013.17014
[12] Littelmann, P., Paths and root operators in representation theory, Ann. of Math. (2), 142, 3, 499-525 (1995) · Zbl 0858.17023
[13] Littelmann, P., Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc., 11, 3, 551-567 (1998) · Zbl 0915.20022
[14] Mathieu, O., Construction d’un groupe de Kac-Moody et applications, Compositio Math., 69, 37-60 (1989) · Zbl 0678.17012
[15] Ramanan, S.; Ramanathan, A., Projective normality of flag varieties and Schubert varieties, Invent. Math., 2, 217-224 (1985) · Zbl 0553.14023
[16] Richardson, R. W., Orbits, invariants and representations associated to involutions of reductive groups, Invent. Math., 66, 287-312 (1982) · Zbl 0508.20021
[17] Springer, T. A., Some results on algebraic groups with involutions, (Algebraic Groups and Related Topics (1985), Kinokuniya/North-Holland), 525-543 · Zbl 1146.14026
[18] Vust, T., Opération de groupes réductifs dans un type de cônes presque homogènes, Bull. Math. Soc. France, 102, 317-334 (1974) · Zbl 0332.22018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.