×

Spectral characterization of anomalous diffusion of a periodic piecewise linear intermittent map. (English) Zbl 1054.82015

Summary: For a piecewise linear version of the periodic map with anomalous diffusion, the evolution of statistical averages of a class of observables with respect to piecewise constant initial densities is investigated and generalized eigenfunctions of the Frobenius-Perron (FP) operator are explicitly derived. The evolution of the averages is controlled by real eigenvalues as well as continuous spectra terminating at the unit circle. Appropriate scaling limits are shown to give a normal diffusion if the reduced map is in the stationary regime with normal fluctuations, a Lévy flight if the reduced map is in the stationary regime with Lévy-type fluctuations and a transport of ballistic type if the reduced map is in the non-stationary regime.

MSC:

82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
37E99 Low-dimensional dynamical systems

References:

[1] D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, MA, 1987.; D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Reading, MA, 1987.
[2] P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge, 1998.; P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge, 1998. · Zbl 0915.00011
[3] J.R. Dorfman, An Introduction to Chaos in Non-equilibrium Statistical Mechanics, Cambridge University Press, Cambridge, 1999.; J.R. Dorfman, An Introduction to Chaos in Non-equilibrium Statistical Mechanics, Cambridge University Press, Cambridge, 1999. · Zbl 0973.82001
[4] Pollicott, M., Ann. Math., 131, 331 (1990) · Zbl 0702.58040
[5] Ruelle, D., Publ. Math. IHES, 72, 175 (1990) · Zbl 0732.47003
[6] T. Tél, J. Vollmer, in: D. Szász (Ed.), Hard Ball Systems and the Lorentz Gas, Encyclopedia of Mathematical Science, vol. 101, Springer, Berlin, 2000, p. 367.; T. Tél, J. Vollmer, in: D. Szász (Ed.), Hard Ball Systems and the Lorentz Gas, Encyclopedia of Mathematical Science, vol. 101, Springer, Berlin, 2000, p. 367. · Zbl 0953.00014
[7] Gaspard, P., Adv. Chem. Phys., 122, 109 (2002)
[8] Gilbert, T.; Dorfman, J. R.; Gaspard, P., Nonlinearity, 14, 339 (2001) · Zbl 0982.37009
[9] Wang, X.-J.; Hu, C.-K., Phys. Rev. E, 48, 728 (1993)
[10] Artuso, R., Phys. Rep., 290, 37 (1997)
[11] Tasaki, S.; Gaspard, P., J. Stat. Phys., 109, 803 (2002) · Zbl 1008.82023
[12] Pomeau, Y.; Manneville, P., Commun. Math. Phys., 14, 189 (1980)
[13] Geisel, T.; Nierwetberg, J.; Zacherl, A., Phys. Rev. Lett., 54, 616 (1985)
[14] Geisel, T.; Thomae, S., Phys. Rev. Lett., 52, 1936 (1984)
[15] M.F. Shlesinger, G.M. Zaslavsky, U. Frisch (Eds.), Lévy Flights and Related Topics in Physics, Springer, Berlin, 1994.; M.F. Shlesinger, G.M. Zaslavsky, U. Frisch (Eds.), Lévy Flights and Related Topics in Physics, Springer, Berlin, 1994. · Zbl 0823.00016
[16] Dräger, J.; Klafter, J., Phys. Rev. Lett., 84, 5998 (2000)
[17] Miyaguchi, T.; Aizawa, Y., Prog. Theor. Phys., 106, 697 (2001) · Zbl 1004.37023
[18] Wang, X.-J., Phys. Rev. A, 40, 6647 (1989)
[19] Lindblad, G.; Nagel, B., Ann. Inst. H. Poincaré, 13, 27 (1970) · Zbl 0203.57202
[20] Zumofen, G.; Klafter, J., Phys. Rev. E, 47, 851 (1993)
[21] Seshadri, V.; West, B. J., Proc. Natl. Acad. Sci. USA, 79, 4501 (1982) · Zbl 0488.60079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.