×

Absence of the point spectrum in a class of tridiagonal operators. (English) Zbl 1053.47025

The paper deals with the tridiagonal operator \[ Te_n= \sqrt{c_n} e_{n+1}+ \sqrt{c_{n-1}} e_{n-1}+ b_n e_n \] with suitable real sequences \((b_n)^\infty_{n=1}\), \((c_n)^\infty_{n=1}\) and the orthonormal basis \((e_n)^\infty_{n=1}\) in a Hilbert space. Sufficient conditions are derived under which the point spectrum of the operator \(T\) outside the interval \([-2\sqrt{c}+ b, 2\sqrt{c}+ b]\) is empty, where \(b= \lim_{n\to\infty} b_n\), \(c= \lim_{n\to\infty} c_n\). The results are illustrated with examples.

MSC:

47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
33C70 Other hypergeometric functions and integrals in several variables
39A70 Difference operators
47A10 Spectrum, resolvent
Full Text: DOI

References:

[1] Al-Salam, W. A.; Chihara, T. S., Convolutions of orthogonal polynomials, SIAM Math. Anal., 7, 1, 16-28 (1976) · Zbl 0323.33007
[2] Chihara, T., An Introduction to Orthogonal Polynomials (1978), Gordon and Breach: Gordon and Breach New York · Zbl 0389.33008
[3] Chihara, T. S., Orthogonal polynomials whose distribution functions have finite point spectra, SIAM J. Math. Anal., 11, 2, 358-364 (1980) · Zbl 0442.42015
[4] Chihara, T. S.; Nevai, P. G., Orthogonal polynomials and measures with finitely many point masses, J. Approx. Theory, 35, 370-380 (1982) · Zbl 0512.42024
[5] Dombrowski, J., Spectral properties of phase operators, J. Math. Phys., 15, 5, 576-577 (1974)
[6] E. Feldheim, Sur les polynomes generalises de Legendre, Russian Transl., ibid 5 (1941) 248-254; E. Feldheim, Sur les polynomes generalises de Legendre, Russian Transl., ibid 5 (1941) 248-254 · Zbl 0060.19405
[7] Geronimo, J. S., An upper bound on the number of eigenvalues of an infinite dimensional Jacobi matrix, J. Math. Phys., 23, 6, 917-921 (1982) · Zbl 0492.42016
[8] Ifantis, E. K., Abstract formulation of the quantum mechanical oscillator phase problem, J. Math. Phys., 12, 6, 1021-1026 (1971) · Zbl 0212.16103
[9] Ifantis, E. K.; Siafarikas, P. D., An alternative proof of a theorem of Stieltjes and related results, J. Comput. Appl. Math., 65, 165-172 (1995) · Zbl 0847.42017
[10] E.K. Ifantis, C.G. Kokologiannaki, P.D. Siafarikas, On the support of the measure of orthogonality of a class of orthogonal polynomials, Appl. Math. Comput. 128 (2-3) (2002) 275-288; E.K. Ifantis, C.G. Kokologiannaki, P.D. Siafarikas, On the support of the measure of orthogonality of a class of orthogonal polynomials, Appl. Math. Comput. 128 (2-3) (2002) 275-288 · Zbl 1042.42015
[11] Kato, T., Perturbation Theory for Linear Operators (1966), Springer: Springer Berlin · Zbl 0148.12601
[12] Lanzewizky, I. J., Uber die orthogonalitat Fejer-Szedoschen polynome, C. R. (Dokl.) Acad. Sci. URSS, 31, 199-200 (1941) · Zbl 0025.16602
[13] Lerner, E. C.; Huang, H. W.; Walters, G. E., Some mathematical problems of oscillator phase operators, J. Math. Phys., 11, 5, 1679-1684 (1970)
[14] Wall, H. S.; Wetzel, M., Quadratic forms and convergence regions for continued fraction, Duke Math. J., 11, 89-102 (1944) · Zbl 0060.16504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.