×

On the number of hexagonal polyominoes. (English) Zbl 1053.05028

A combination of the refined finite lattice method and transfer allows a radical increase in the computer enumeration of polyominoes on the hexagonal lattice (equivalently, site clusters on the triangular lattice), \(p_n\), with \(n\) hexagons.
In this paper the authors obtain \(p_n\) for \(n\leq 35\). They prove \(p_n= \iota^{n+o(n)}\), obtain the bounds \(4.8049\leq\iota\leq 5.9047\), and estimate that \(5.1831478\,(17)\).
Finally, they provide compelling numerical evidence that the generating function \(\sum\) \(p_nz^n\approx A(z)\log(1-\iota z)\), for \(z\to (1/\iota)^-\) with \(A(z)\) holomorphic in a cut plane, estimate \(A(1/\iota)\) and predict the subleading asymptotic behavior, identifying a nonanalytic correction-to-scaling term with exponent \(\Delta= 3/2\). On the basis of universality and earlier numerical work, the authors argue that the mean square radius of gyration \(\langle R^2_g\rangle_n\) of polyominoes of size \(n\) grows as \(n^{2v}\), with \(v= 0.64115(5)\).

MSC:

05B50 Polyominoes
05C30 Enumeration in graph theory
68R10 Graph theory (including graph drawing) in computer science
Full Text: DOI

References:

[1] Conway, A. R.; Guttmann, A. J., Square lattice self-avoiding walks and corrections-to-scaling, Phys. Rev. Lett., 77, 5284-5287 (1996)
[2] Cyvin, B. N.; Brunvoll, J.; Cyvin, S. J., Topics Current Chem., 162, 66-180 (1992)
[3] M. Eden, A two-dimensional growth process, in: Proc. 4th Berkeley Symp. Mathematics Statistics and Probability, Vol. IV, University of California Press, Berkeley, CA, 1961, pp. 223-239.; M. Eden, A two-dimensional growth process, in: Proc. 4th Berkeley Symp. Mathematics Statistics and Probability, Vol. IV, University of California Press, Berkeley, CA, 1961, pp. 223-239. · Zbl 0104.13801
[4] Enting, I. G., Generating functions for enumerating self-avoiding rings on the square lattice, J. Phys. A, 13, 3713-3722 (1980)
[5] Enting, I. G., Series expansions from the finite lattice method, Nucl. Phys. B - Proc. Suppl., 47, 1-3, 180-187 (1996)
[6] Enting, I. G.; Guttmann, A. J., Polygons on the honeycomb lattice, J. Phys. A, 22, 1371-1384 (1989)
[7] Golomb, S. W., Polyominoes (1994), Scribener: Scribener New York
[8] Gutman, I.; Cyvin, S. J., Introduction to the Theory of Benzenoid Hydrocarbons (1989), Springer: Springer Berlin · Zbl 0722.05056
[9] A.J. Guttmann, Analysis of coefficients, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 13, Academic Press, New York, 1989.; A.J. Guttmann, Analysis of coefficients, in: C. Domb, J.L. Lebowitz (Eds.), Phase Transitions and Critical Phenomena, Vol. 13, Academic Press, New York, 1989.
[10] Guttmann, A. J.; Jensen, I.; Owczarek, A. L., Polygonal polyominoes on the square lattice, J. Phys. A, 34, 3721-3733 (2001) · Zbl 0996.82032
[11] Henkel, M., Conformal Invariance and Critical Phenomena (1999), Springer: Springer Berlin · Zbl 1053.82001
[12] Jensen, I.; Guttmann, A. J., Self-avoiding polygons on the square lattice, J. Phys. A, 32, 4867-4876 (1999) · Zbl 0938.82019
[13] Jensen, I.; Guttmann, A. J., Statistics of lattice animals (polyominoes) and polygons, J. Phys. A, 33, L257-L263 (2000) · Zbl 1009.82010
[14] Kesten, H., On the number of self-avoiding walks, J. Math. Phys., 4, 960-969 (1963) · Zbl 0122.36502
[15] Klarner, D. A.; Rivest, R., A procedure for improving the upper bound for the number of \(n\)-ominoes, Canad. J. Math., 25, 585-602 (1973) · Zbl 0261.05113
[16] W.F. Lunnon, Counting hexagonal and triangular polyominoes, in: Graph Theory and Computing, Academic Press, New York, 1972, pp. 87-100.; W.F. Lunnon, Counting hexagonal and triangular polyominoes, in: Graph Theory and Computing, Academic Press, New York, 1972, pp. 87-100. · Zbl 0252.05017
[17] Madras, N., A rigorous bound on the critical exponent for the number of lattice trees, animals and polygons, J. Statist. Phys., 78, 681-699 (1995) · Zbl 1080.82541
[18] Madras, N., A pattern theorem for lattice clusters, Ann. of Combin., 3, 357-384 (1999) · Zbl 0935.60089
[19] Mertens, S.; Lauterbacher, M. E., Counting lattice animalsa parallel attack, J. Statist. Phys., 66, 669-678 (1992) · Zbl 0925.82099
[20] Nienhuis, B., Exact critical point and critical exponents of \(O(n)\) models in two dimensions, Phys. Rev. Lett., 49, 1062-1065 (1982)
[21] Parisi, G.; Sourlas, N., Critical behaviour of branched polymers and the Lee-Yang edge singularity, Phys. Rev. Lett., 46, 871-874 (1981) · Zbl 0969.82030
[22] Rands, B. M.I.; Welsh, D. J.A., Animals, trees and renewal sequences, J. Appl. Math., 27, 1-17 (1981) · Zbl 0464.05004
[23] Sloane, N. J.A.; Plouffe, S., The Encyclopaedia of Integer Sequences (1995), Academic Press: Academic Press San Diego · Zbl 0845.11001
[24] Sykes, M. F.; Glen, M., Percolation processes in two dimensions I. Low-density series expansions, J. Phys. A, 9, 87-95 (1976)
[25] M. Vöge, Rigorous bounds on growth constants for polygons and polyominoes, in preparation.; M. Vöge, Rigorous bounds on growth constants for polygons and polyominoes, in preparation.
[26] Vöge, M.; Guttmann, A. J.; Jensen, I., On the number of benzenoid hydrocarbons, J. Chem. Inform. Comput. Sci., 42, 456-466 (2002)
[27] Whittaker, E. T.; Watson, G. N., A Course of Modern Analysis (1963), The University Press: The University Press Cambridge · Zbl 0108.26903
[28] Whittington, S. G.; Soteros, C. E., Lattice animals: rigorous results and wild guesses, (Grimmett, G. R.; Welsh, D. J.A., Disorder in Physical Systems (1989), Clarendon: Clarendon Oxford) · Zbl 0737.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.