×

Bianchi type I universe models with irreversible matter creation. (English) Zbl 1052.83538

Summary: The effects of matter creation on the evolution and dynamics of an anisotropic Bianchi type I space-time is investigated in the framework of open thermodynamic systems theory. For a cosmological fluid obeying a Zel’dovich type equation of state \(\rho=p\) and with particle creation rate proportional to the square of the mean Hubble function and to the energy density of matter, respectively, the general solution of the gravitational field equations can be expressed in an exact parametric form. Generically all models start from a non-singular state. In the large time limit anisotropic cosmological models with particle creation rate proportional to the square of the Hubble function end in an isotropic flat (inflationary or non-inflationary) phase while models with particle source function proportional to the energy density of matter do not isotropize, ending in a Kasner-type geometry.

MSC:

83F05 Relativistic cosmology
Full Text: DOI

References:

[1] Prigogine, I., Géhéniau, J., Gunzig, E., and Nardone, P. (1988). Pr · doi:10.1073/pnas.85.20.7428
[2] Prigogine, I., Géhéniau, J., Gunzig, E., and Nardone, P. · Zbl 0668.53062 · doi:10.1007/BF00758981
[3] Calvão, M. O., Lima, J. A. S., and Waga, · doi:10.1016/0375-9601(92)90437-Q
[4] Sudharsan, R., and Johri, V. B. · doi:10.1007/BF02088207
[5] Desikan, K. · Zbl 0870.53077 · doi:10.1023/A:1018826530976
[6] Lima, J. A. S., Germano, A. S. M., and Abramo, L. R. · doi:10.1103/PhysRevD.53.4287
[7] Abramo, L. R. W., and Lima, J. A. S. (199 · Zbl 0864.53076 · doi:10.1088/0264-9381/13/11/011
[8] Lima, J. A. S. · Zbl 0900.83018 · doi:10.1023/A:1018850330860
[9] Johri, V. B., and Desikan, K. · doi:10.1007/BF02106714
[10] Harko, T., and Mak, M. K. (1997 · Zbl 0914.76097 · doi:10.1023/A:1000699922344
[11] Brevik, I., and Stokkan, G. (1996 · Zbl 0890.76095 · doi:10.1007/BF00653769
[12] Gunzig, E., Maartens, R., and Nesteruk, A. V. (199 · Zbl 0933.83041 · doi:10.1088/0264-9381/15/4/014
[13] Zimdahl, W., and Pavón, · doi:10.1016/0375-9601(93)90316-R
[14] Zimdahl, W., Pavón, D., and Jou, D. (199 · doi:10.1088/0264-9381/10/9/019
[15] Zimdahl, W., and Pavón, D. (199 · doi:10.1142/S0218271894000563
[16] Zimdahl, W., and Pavón, D. · doi:10.1007/BF02106717
[17] Grøn,
[18] Grøn, Ø. (1990 · Zbl 0714.76120 · doi:10.1007/BF00643930
[19] Shapiro, S. L., and Teukolsky, S. A. (1983). Black Holes, White Dwarfs and Neutron Stars (John Wiley & Sons, New York).
[20] Landau, L. D., and Lifshitz, E. M. (1975). The Classical Theory of Fields (Cambridge University Press, Cambridge). · Zbl 0178.28704
[21] Zel’dovich, Y
[22] Murphy, G. · doi:10.1103/PhysRevD.8.4231
[23] Hu, B. · doi:10.1016/0375-9601(82)90635-1
[24] Huang, W. H · Zbl 0706.76145 · doi:10.1063/1.528736
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.