×

Nonholonomic mapping principle for classical and quantum mechanics in spaces with curvature and torsion. (English) Zbl 1052.81572

Summary: The author explains the geometric basis for the recently-discovered nonholonomic mapping principle which permits deriving laws of nature in spacetimes with curvature and torsion from those in flat spacetime, thus replacing and extending Einstein’s equivalence principle. As an important consequence, it yields a new action principle for determining the equation of motion of a free spinless point particle in such spacetimes. Surprisingly, this equation contains a torsion force, although the action involves only the metric. This force makes trajectories autoparallel rather than geodesic, as a manifestation of inertia. A generalization of the mapping principle transforms path integrals from flat spacetimes to those with curvature and torsion, thus playing the role of a quantum equivalence principle. This generalization yields consistent results only for completely antisymmetric or for gradient torsion.

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
70H25 Hamilton’s principle
81S40 Path integrals in quantum mechanics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Utiyam · Zbl 0070.22102 · doi:10.1103/PhysRev.101.1597
[2] Kibble, T. W. B · Zbl 0095.22903 · doi:10.1063/1.1703702
[3] Hehl, F. W., von der Heyde, P., Kerlick, G. D., and Nester, J. M. · Zbl 1371.83017 · doi:10.1103/RevModPhys.48.393
[4] Hojman, S., Rosenbaum, M., Ryan, M. · doi:10.1103/PhysRevD.19.430
[5] Hehl, F. W., McCrea, J. D., Mielke, E. W., and Ne’ema · doi:10.1016/0370-1573(94)00111-F
[6] Kleinert, H. (1989). Gauge Fields in Condensed Matter, Vol. II, Stresses and Defects (World Scientific, Singapore). · Zbl 0785.53061
[7] Hehl, F. · doi:10.1016/0375-9601(71)90433-6
[8] Kleinert, H. (1 · doi:10.1142/S0217732389002628
[9] Kleinert, H. (1991). ”Quantum Equivalence Principle for Path Integrals in Spaces with Curvature and Torsion.” Lecture at the XXV International Symposium Ahrenshoop on Elementary Particles in Gosen/Germany, CERN Report, H. J. Kaiser, ed. (Preprint quant-ph/9511020).
[10] Kleinert, H. (1995). Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (2nd ed., World Scientific, Singapore). · Zbl 0942.81038
[11] Kleinert, H. Quantum Equivalence Principle, Lecture presented at the Summer School Functional Integration: Basics and Applications in Cargèse/France (1996).
[12] Bilby, B. A., Bullough, R., and Smith, E. (1955) · doi:10.1098/rspa.1955.0171
[13] Kröner, E. (1981). In Physics of Defects (Les Houches, Session XXXV, 1980), R. Balian et al., eds. (North-Holland, Amsterdam), p. 215.
[14] Kröner, E. (19 · Zbl 0709.53050 · doi:10.1007/BF00672933
[15] Weinberg, S. (1972). Gravitation and Cosmology (Wiley, New York).
[16] Schouten, J. A. (1954). Ricci-Calculus (2nd ed., Springer, Berlin). · Zbl 0057.37803
[17] Kondo, K. (1962). In RAAG Memoirs of the Unified Study of Basic Problems in Engineering and Science by Means of Geometry, K. Kondo, ed. <q>(Gahajutsu Bunken Fukuyu-Kai), vol. 3, p. 148.
[18] Kleinert, H. (199 · Zbl 0802.53046 · doi:10.1142/S0217751X9200212X
[19] Kleinert, · doi:10.1016/0370-2693(90)91318-6
[20] Kleinert, · doi:10.1016/0370-2693(92)91497-W
[21] Dirac, P. A. M. ( · Zbl 0002.30502 · doi:10.1098/rspa.1931.0130
[22] Kleinert, H. (1989). Gauge Fields in Condensed Matter. Vol. I, Superflow and Vortex Lines (World Scientific, Singapore). · Zbl 0785.53061
[23] Kleinert, H. (1995). In Proc. NATO Advanced Study Institute on Formation and Interaction of Topological Defects (Plenum Press, New York), p. 201–232.
[24] Williams, R., Ellis, G. · Zbl 0462.53038 · doi:10.1007/BF01025469
[25] Fiziev, P., and Kleinert, H. · doi:10.1209/epl/i1996-00555-0
[26] Kleinert, H., and Pelster, A. · Zbl 1010.83055 · doi:10.1023/A:1026701613987
[27] Kleinert, H., and Pelster, A. (19
[28] Kleinert, · doi:10.1016/0375-9601(88)90239-3
[29] Kleinert, H., and Shabanov, · doi:10.1016/S0370-2693(98)00421-3
[30] Stiefel, E. L., and Scheifele, G. (1971). Linear and Regular Celestial Mechanics (Springer, Berlin). · Zbl 0226.70005
[31] DeWitt, B. S. · Zbl 0118.23301 · doi:10.1103/RevModPhys.29.377
[32] Saa, A. ( · Zbl 1020.83646 · doi:10.1142/S0217732393002920
[33] de Sabbata, V. (1997). In Proc. XV Int. School of Cosmology and Gravitation – Spin in Gravity: Is it Possible to Give an Experimental Basis to Torsion? (Erice 1997), P. Pronin and V. de Sabbata, eds. (World Scientific, Singapore)
[34] Fiziev, P. P. · Zbl 0943.83042 · doi:10.1023/A:1018800507761
[35] Kleinert, H. (1997). ”Universality Principle for Orbital Angular Momentum and Spin in Gravity with Torsion.” To appear in Gen. Rel. Grav. · Zbl 1169.83311
[36] Kleinert, · doi:10.1016/S0370-2693(98)01108-3
[37] Fuchs, H · Zbl 0742.70018 · doi:10.1063/1.529176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.