×

Shapes and cycles arising at the steady bifurcation with icosahedral symmetry. (English) Zbl 1051.37024

Summary: This paper analyses the steady-state bifurcation with icosahedral symmetry. The equivariant branching lemma is used to predict the generic bifurcating solution branches corresponding to each irreducible representation of the icosahedral group \({\mathcal I}_h\). The relevant amplitude equations are deduced from the equivariance condition, and used to investigate the stability of bifurcating solutions. It is found that the bifurcation with icosahedral symmetry can lead to competition between two-fold, three-fold and five-fold symmetric structures, and between solutions with tetrahedral, three-fold and two-fold symmetry. Stable heteroclinic cycles between solutions with \({\mathcal D}_2^z\) symmetry are found to exist in one of the irreps. The theoretical scenarios are compared with the observed behaviour of icosahedral viruses and nanoclusters.

MSC:

37G40 Dynamical aspects of symmetries, equivariant bifurcation theory
34C23 Bifurcation theory for ordinary differential equations
92B05 General biology and biomathematics

References:

[1] Goodsell, D. S.; Olson, A. J., Structural symmetry and protein function, Annu. Rev. Biophys. Biomol. Struct., 29, 105-153 (2000)
[2] Tama, F.; Brooks, C. L., The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus, J. Mol. Biol., 318, 733-747 (2002)
[3] Steven, A. C.; Trus, B. L.; Booy, F. P.; Cheng, N.; Zlotnick, A.; Caston, J. R.; Conway, J. F., The making and breaking of symmetry in virus capsid assembly: glimpses of capsid biology from cryoelectron microscopy, FASEB J., 11, 733-742 (1997)
[4] Trus, B. L.; Booy, F. P.; Newcomb, W. W.; Brown, J. C.; Homa, F. L.; Thomsen, D. R.; Steven, A. C., The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly, J. Mol. Biol., 263, 447-462 (1996)
[5] Conway, J. F.; Duda, R. L.; Cheng, N.; Hendrix, R. W.; Steven, A. C., Proteolytic and conformational control of virus capsid maturation: the bacteriophage HK97 system, J. Mol. Biol., 253, 86-99 (1995)
[6] Conway, J. F.; Wikoff, W. R.; Cheng, N.; Duda, R. L.; Hendrix, R. W.; Johnson, J. E.; Steven, A. C., Virus maturation involving large subunit rotations and local refolding, Science, 292, 744-748 (2001)
[7] M.A. Canady, M. Tihova, T.N. Hanzlik, J.E. Johnson, M. Yeager, Large conformational changes in the maturation of a simple RNA virus, Nudaurelia capensis omega virus (N omega V), J. Mol. Biol. 299 (2000) 573-584.; M.A. Canady, M. Tihova, T.N. Hanzlik, J.E. Johnson, M. Yeager, Large conformational changes in the maturation of a simple RNA virus, Nudaurelia capensis omega virus (N omega V), J. Mol. Biol. 299 (2000) 573-584.
[8] Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W., Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 53, 1951-1953 (1984)
[9] Ihrig, E.; Golubitsky, M., Pattern selection with O(3) symmetry, Physica D, 13, 1-33 (1984) · Zbl 0581.22021
[10] Chossat, P.; Lauterbach, R.; Melbourne, I., Steady state bifurcation with O(3) symmetry, Arch. Ration. Mech. Anal., 113, 313-376 (1990) · Zbl 0722.58031
[11] Matthews, P. C., Pattern formation on a sphere, Phys. Rev. E, 67, 036206 (2003)
[12] Matthews, P. C., Transcritical bifurcation with O(3) symmetry, Nonlinearity, 16, 1449-1471 (2003) · Zbl 1047.37035
[13] Byrne, H. M.; Matthews, P. C., Asymmetric growth of avascular solid tumours: exploiting symmetries, IMA J. Math. Appl. Med. Biol., 19, 1-29 (2002) · Zbl 1014.92019
[14] Doye, J. P.K.; Wales, D. J., Structural consequences of the range of the interatomic potential: a menagerie of clusters, J. Chem. Soc., Faraday Trans., 93, 4233-4244 (1997), and references therein
[15] Doye, J. P.K.; Wales, D. J.; Branz, W.; Calvo, F., Modeling the structure of clusters of \((C_{60})\) molecules, Phys. Rev. B, 64, 235409 (2001)
[16] P. Kramer, R.W. Haase, Group theory of icosahedral quasicrystals, in: M.V. Jaric (Ed.), Introduction to the Mathematics of Quasicrystals, Academic Press, Boston, 1989.; P. Kramer, R.W. Haase, Group theory of icosahedral quasicrystals, in: M.V. Jaric (Ed.), Introduction to the Mathematics of Quasicrystals, Academic Press, Boston, 1989. · Zbl 0679.52001
[17] J.F. Cornwell, Group Theory in Physics, Academic Press, London, 1984.; J.F. Cornwell, Group Theory in Physics, Academic Press, London, 1984. · Zbl 0557.20001
[18] M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, vol. II, Springer-Verlag, New York, 1988.; M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory, vol. II, Springer-Verlag, New York, 1988. · Zbl 0691.58003
[19] R. Lauterbach, Habilitationsschrift Problems with Spherical Symmetry: Studies on Bifurcations and Dynamics for O(3)-Equivariant Equations, 1988.; R. Lauterbach, Habilitationsschrift Problems with Spherical Symmetry: Studies on Bifurcations and Dynamics for O(3)-Equivariant Equations, 1988.
[20] P.C. Matthews, Bifurcation in two-dimensional fixed point subspaces, 2003. arXiv:math.DS/0305392; P.C. Matthews, Bifurcation in two-dimensional fixed point subspaces, 2003. arXiv:math.DS/0305392
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.