×

Estimation methods for delays in non-regenerative discrete-event systems. (English) Zbl 1048.62089

Summary: Many long-run delay characteristics of computer, communication, manufacturing, and transportation systems can be specified as time-average limits of sequences of delays in generalized semi-Markov processes (GSMPs). We consider sequences of delays that are determined from the state transitions of the GSMP using the method of start vectors. In this setting, time-average limits typically must be estimated using simulation. Previous work on estimation methods for delays has focused on GSMPs for which there exists a sequence of regeneration points. For such systems, it is often possible to find an explicit sequence of regeneration points or od-regeneration points for the sequence of delays, so that point estimates and confidence intervals for time-average limits can be obtained using the regenerative method for simulation output analysis or one of its variants.
This paper is concerned with GSMPS for which this approach is not feasible, either because regeneration points for the GSMP cannot be identified or because regenerations occur too infrequently. We provide conditions on the building blocks of a GSMP and start-vector mechanism under which the sequence of delays is an od-regenerative process and cycle sums have finite moments – these conditions do not require that there exist regeneration points for the GSMP. Although in our setting the od-regeneration points for the sequence of delays usually cannot be determined explicitly, the mere existence of these points implies that time-average limits are well defined and the sequence of delays obeys a multivariate functional central limit theorem. It then follows (from results of Glynn, Iglehart, and Muñoz) that methods based on standardized time series can be used to obtain strongly consistent point estimates and asymptotic confidence intervals for time-average limits and functions of time-average limits. In particular, the method of batch means is applicable.

MSC:

62M99 Inference from stochastic processes
62M09 Non-Markovian processes: estimation
60F17 Functional limit theorems; invariance principles
60K20 Applications of Markov renewal processes (reliability, queueing networks, etc.)
Full Text: DOI

References:

[1] Shedler G.S., Regenerative Stochastic Simulation (1993) · Zbl 0780.60083
[2] Haas P.J., Stochastic Petri Nets: Modelling, Stability, Simulation (2002) · Zbl 1052.90001 · doi:10.1007/b97265
[3] Haas P.J., Proc. Sixth Intl. Workshop Petri Nets Performance Models pp 191–
[4] DOI: 10.1007/BF01796783 · Zbl 0844.93083 · doi:10.1007/BF01796783
[5] DOI: 10.1080/15326349308807253 · Zbl 0795.68023 · doi:10.1080/15326349308807253
[6] DOI: 10.1147/rd.303.0278 · Zbl 0636.68066 · doi:10.1147/rd.303.0278
[7] DOI: 10.1287/moor.15.1.1 · Zbl 0704.65110 · doi:10.1287/moor.15.1.1
[8] DOI: 10.1287/opre.31.6.1090 · Zbl 0532.62067 · doi:10.1287/opre.31.6.1090
[9] DOI: 10.1287/mnsc.10.1.47 · doi:10.1287/mnsc.10.1.47
[10] DOI: 10.2307/3212358 · Zbl 0258.62050 · doi:10.2307/3212358
[11] DOI: 10.1016/0167-6377(91)90011-D · Zbl 0737.62070 · doi:10.1016/0167-6377(91)90011-D
[12] DOI: 10.1287/mnsc.36.5.602 · Zbl 0716.62038 · doi:10.1287/mnsc.36.5.602
[13] Durrett R., Probability: Theory and Examples (1991) · Zbl 0709.60002
[14] DOI: 10.1109/32.761447 · doi:10.1109/32.761447
[15] DOI: 10.1080/15326349908807525 · Zbl 1126.62306 · doi:10.1080/15326349908807525
[16] Glynn, P.W. ”Simulation output analysis for general state space Markov chains.”. Stanford, CA: Department of Operations Research, Stanford University. · Zbl 0642.65097
[17] DOI: 10.1287/moor.15.1.175 · Zbl 0713.60104 · doi:10.1287/moor.15.1.175
[18] DOI: 10.1287/mnsc.43.8.1121 · Zbl 0908.62088 · doi:10.1287/mnsc.43.8.1121
[19] Meyn S.P., Markov Chains and Stochastic Stability (1993) · Zbl 0925.60001 · doi:10.1007/978-1-4471-3267-7
[20] Haas, P.J. ”Recurrence and regeneration in non-Markovian simulations”. Stanford, CA: Department of Operations Research, Stanford University. · Zbl 0655.60081
[21] Asmussen S., Applied Probability and Queues (1987)
[22] Billingsley P., Convergence of Probability Measures (1968) · Zbl 0172.21201
[23] Haas P.J., Performance Eval. Rev. 30 pp 35–37– (2002)
[24] DOI: 10.1287/opre.30.3.556 · Zbl 0484.65087 · doi:10.1287/opre.30.3.556
[25] DOI: 10.1287/opre.49.3.413.11209 · Zbl 1163.62344 · doi:10.1287/opre.49.3.413.11209
[26] DOI: 10.1007/BF01536188 · Zbl 0676.60088 · doi:10.1007/BF01536188
[27] DOI: 10.1214/aop/1039639370 · Zbl 0863.60063 · doi:10.1214/aop/1039639370
[28] DOI: 10.1016/S0304-4149(98)00085-4 · Zbl 0961.60066 · doi:10.1016/S0304-4149(98)00085-4
[29] DOI: 10.2307/1427933 · Zbl 0835.62071 · doi:10.2307/1427933
[30] Gut A., Stopped Random Walks: Limit Theorems and Applications (1988) · Zbl 0634.60061 · doi:10.1007/978-1-4757-1992-5
[31] Loéve M., 4th Ed., in: Probability Theory (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.