×

Long time behavior of solutions to the 3D compressible Euler equations with damping. (English) Zbl 1048.35051

For the Cauchy problem for three-dimensional compressible Euler equations, the authors study the effect of damping on the large-time behavior of solutions. First, the Cauchy problem is reformulated as a symmetric hyperbolic system with positive density. Then the authors prove a local existence theorem and establish the finite speed of perturbation propagation. Using effective energy estimates, it is shown that the damping prevents the development of singularities of a small-amplitude classical solution. The full solution relaxes in the maximum norm to the constant background state at a rate of \(t^{-3/2}\). While the fluid vorticity decays to zero exponentially fast in time, the full solution, in general, does not decay exponentially. Finally, the authors obtain some differential inequalities which demonstrate that solutions may blow up in finite time if the data is sufficiently large.

MSC:

35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
35B40 Asymptotic behavior of solutions to PDEs
76N15 Gas dynamics (general theory)
35L65 Hyperbolic conservation laws
Full Text: DOI

References:

[1] DOI: 10.1007/BF01231301 · Zbl 0798.35129 · doi:10.1007/BF01231301
[2] Alinhac S., Blowup for Nonlinear Hyperbolic Equations (1995) · Zbl 0820.35001 · doi:10.1007/978-1-4612-2578-2
[3] Batchelor GK., An Introduction to Fluid Dynamics., 2. ed. (1999)
[4] DOI: 10.1007/s001610050094 · Zbl 0922.76237 · doi:10.1007/s001610050094
[5] DOI: 10.1007/BF02097370 · Zbl 0711.76076 · doi:10.1007/BF02097370
[6] Courant R, Supersonic Flow and Shock Waves (1976) · doi:10.1007/978-1-4684-9364-1
[7] Dafermos CM., Transactions of the Twenty-Sixth Conference of Army Mathematicians pp 187–
[8] Dafermos CM., Hyperbolic Conservation Laws in Continuum Physics (2000) · Zbl 0940.35002 · doi:10.1007/978-3-662-22019-1
[9] Grassin M, C R Acad Sci Paris Ser I 325 pp 721– (1997) · Zbl 0887.35125 · doi:10.1016/S0764-4442(97)80048-1
[10] Hsiao L., Quasilinear Hyperbolic Systems and Dissipative Mechanisms (1997) · Zbl 0911.35003
[11] DOI: 10.1007/BF02099268 · Zbl 0763.35058 · doi:10.1007/BF02099268
[12] DOI: 10.1006/jdeq.1999.3648 · Zbl 0942.35138 · doi:10.1006/jdeq.1999.3648
[13] DOI: 10.1137/S0036141094267078 · Zbl 0849.35069 · doi:10.1137/S0036141094267078
[14] DOI: 10.1002/cpa.3160270307 · Zbl 0302.35064 · doi:10.1002/cpa.3160270307
[15] DOI: 10.1007/BF00280740 · Zbl 0343.35056 · doi:10.1007/BF00280740
[16] Landau LD, Fluid Mechanics., 2. ed. (1987)
[17] DOI: 10.1063/1.1704154 · Zbl 0135.15101 · doi:10.1063/1.1704154
[18] Li T-T., Global Classical Solutions for Quasilinear Hyperbolic Systems (1994) · Zbl 0841.35064
[19] DOI: 10.1016/0022-0396(79)90082-2 · Zbl 0379.35048 · doi:10.1016/0022-0396(79)90082-2
[20] Majda A., Applied Mathematical Sciences 53 (1984)
[21] DOI: 10.1007/BF03167100 · Zbl 0637.76065 · doi:10.1007/BF03167100
[22] DOI: 10.1007/BF01214738 · Zbl 0543.76099 · doi:10.1007/BF01214738
[23] Natalini R., Analysis of Systems of Conservation Laws 99 pp 128– (1999) · Zbl 0930.65095
[24] DOI: 10.3792/pja/1195521083 · Zbl 0167.10301 · doi:10.3792/pja/1195521083
[25] Nishida T., Nonlinear Hyperbolic Equations and Related Topics in Fluid Dynamics (1978) · Zbl 0392.76065
[26] DOI: 10.1006/jdeq.1996.0159 · Zbl 0866.35066 · doi:10.1006/jdeq.1996.0159
[27] DOI: 10.1090/S0002-9939-1989-0984811-5 · doi:10.1090/S0002-9939-1989-0984811-5
[28] DOI: 10.1007/BF01210741 · Zbl 0606.76088 · doi:10.1007/BF01210741
[29] DOI: 10.1512/iumj.1991.40.40025 · Zbl 0736.35087 · doi:10.1512/iumj.1991.40.40025
[30] DOI: 10.1353/ajm.1997.0014 · Zbl 0876.35091 · doi:10.1353/ajm.1997.0014
[31] DOI: 10.1007/s00033-001-8135-2 · Zbl 0979.35095 · doi:10.1007/s00033-001-8135-2
[32] DOI: 10.1006/jdeq.2000.3937 · Zbl 0997.35039 · doi:10.1006/jdeq.2000.3937
[33] Whitham GB., Linear and Nonlinear Waves (1973)
[34] Yong W-A., Advances in the Theory of Shock Waves 47 pp 259– (2001) · doi:10.1007/978-1-4612-0193-9_4
[35] DOI: 10.1007/s002050050188 · Zbl 0966.76079 · doi:10.1007/s002050050188
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.