×

Bulk and boundary \(S\)-matrices for the \(\text{SU}(N)\) chain. (English) Zbl 1047.82512

Summary: We consider both closed and open integrable antiferromagnetic chains constructed with the \(\text{SU}(N)\)-invariant \(R\)-matrix. For the closed chain, we extend the analyses of Sutherland and Kulish-Reshetikhin by considering also complex “string” solutions of the Bethe ansatz equations. Such solutions are essential to describe general multiparticle excited states. We also explicitly determine the \(\text{SU}(N)\) quantum numbers of the states. In particular, the model has particle-like excitations in the fundamental representations \([k]\) of \(\text{SU}(N)\), with \(k= 1,\cdots,N-1\). We directly compute the complete two-particle S-matrices for the cases \([1]\otimes[1]\) and \([1]\otimes [N-1]\). For the open chain with diagonal boundary fields, we show that the transfer matrix has the symmetry \(\text{SU}(l)\times\text{SU}(N-l)\times\text{U}(1)\), as well as a new “duality” symmetry which maps \(l\leftrightarrow N-l\). With the help of these symmetries, we compute by means of the Bethe ansatz for particles of types \([1]\) and \([N-1]\) the corresponding boundary \(S\)-matrices.

MSC:

82B23 Exactly solvable models; Bethe ansatz
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Bethe, H., Z. Phys., 71, 205 (1931) · Zbl 0002.37205
[2] Faddeev, L. D.; Takhtajan, L. A., Phys. Lett. A, 85, 375 (1981)
[3] Faddeev, L. D.; Takhtajan, L. A., J. Sov. Math., 24, 241 (1984) · Zbl 0532.47009
[4] Zamolodchikov, A. B., Sov. Sci. Rev., A2, 1 (1980)
[5] Ogievetsky, E.; Reshetikhin, N.; Wiegmann, E., Nucl. Phys. B, 280, 45 (1987)
[6] Korepin, V. E.; Izergin, G.; Bogoliubov, N. M., Quantum Inverse Scattering Method, Correlation Functions and Algebraic Bethe ansatz (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0787.47006
[7] Cherednik, I. V., Theor. Math. Phys., 61, 977 (1984) · Zbl 0575.22021
[8] Sklyanin, E. K., J. Phys. A, 21, 2375 (1988) · Zbl 0685.58058
[9] Mezincescu, L.; Nepomechie, R. I., J. Phys. A, 24, L17 (1991) · Zbl 0733.58050
[10] Ghoshal, S.; Zamolodchikov, A. B., Int. J. Mod. Phys. A, 9, 4353 (1994)
[11] Yang, C. N., Phys. Rev. Lett., 19, 1312 (1967) · Zbl 0152.46301
[12] Sutherland, B., Phys. Rev. B, 12, 3795 (1975)
[13] Kulish, P. P.; Reshetikhin, N. Yu., Sov. Phys. JETP, 53, 108 (1981)
[14] de Vega, H. J.; González-Ruiz, A., Mod. Phys. Lett. A, 9, 2207 (1994)
[15] Grisaru, M.; Mezincescu, L.; Nepomechie, R. I., J. Phys. A, 28, 1027 (1995) · Zbl 0854.35112
[16] Doikou, A.; Mezincescu, L.; Nepomechie, R. I., J. Phys. A, 30, L507 (1997) · Zbl 1042.82514
[17] Georgi, H., Lie Algebras in Particle Physics (1982), Benjamin/ Cummingsy · Zbl 0505.00036
[18] Mezincescu, L.; Nepomechie, R. I., Mod. Phys. Lett. A, 6, 2497 (1991)
[19] de Vega, H. J.; González-Ruiz, A., Phys. Lett. B, 332, 123 (1994)
[20] de Vega, H. J., Int. J. Mod. Phys. A, 4, 2371 (1989) · Zbl 0693.58045
[21] Yang, C. N.; Yang, C. P., J. Math. Phys., 10, 1115 (1969) · Zbl 0987.82503
[22] Takahashi, M., Prog. Theor. Phys., 46, 401 (1971)
[23] Gaudin, M., Phys. Rev. Lett., 26, 1301 (1971)
[24] Mezincescu, L.; Nepomechie, R. I.; Townsend, P. K.; Tsvelik, A. M., Nucl. Phys. B, 406, 681 (1993) · Zbl 1043.82526
[25] .E. Korepin, V., Theor. Math. Phys., 76, 165 (1980)
[26] Andrei, N.; Destri, C., Nucl. Phys. B, 231, 445 (1984)
[27] Gradshteyn, K. S.; Ryzhik, I. M., Table of Integrals, Series, and Products (1980), Academic Press: Academic Press New York · Zbl 0521.33001
[28] Reshetikhin, N. Yu.; Semenov-Tian-Shansky, M. A., Lett. Math. Phys., 19, 133 (1990) · Zbl 0692.22011
[29] Mezincescu, L.; Nepomechie, R. I., Int. J. Mod. Phys. A, 7, 5657 (1992)
[30] de Vega, H. J.; González-Ruiz, A., Nucl. Phys. B, 417, 553 (1994) · Zbl 1009.82503
[31] A. Doikou and R.I. Nepomechie, in preparation.; A. Doikou and R.I. Nepomechie, in preparation.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.