×

Second-order estimates for the effective behaviour of viscoplastic polycrystalline materials. (English) Zbl 1047.74529


MSC:

74Q20 Bounds on effective properties in solid mechanics
74E15 Crystalline structure
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
Full Text: DOI

References:

[1] Adams, B.; Olson, T., The mesostructure-properties linkage in polycrystals, Prog. Mater. Sci., 43, 1-88 (1998)
[2] Allais, L.; Bornert, M.; Bretheau, T.; Caldemaison, D., Experimental characterization of the local strain field in a heterogeneous elastoplastic material, Acta. Metall. Mater., 42, 11, 3865-3880 (1994)
[3] Aravas, N.; Cheng, C.; Ponte Castañeda, P., Steady-state creep of fiber-reinforced composites: constitutive equations and computational issues, Int. J. Solids Struct., 32, 15, 2219-2244 (1995) · Zbl 0874.73041
[4] Berveiller, M.; Zaoui, A., An extension of the self-consistent scheme to plastically-flowing polycrystals, J. Mech. Phys. Solids, 26, 325-344 (1979) · Zbl 0395.73033
[5] Bornert, M.; Ponte Castañeda, P., Second-order estimates of the self-consistent type for viscoplastic polycrystals, Proc. R. Soc. Lond. A, 356, 3035-3045 (1998) · Zbl 0916.73025
[6] Castelnau, O.; Canova, G. R.; Lebensohn, R. A.; Duval, P., Modelling viscoplastic behavior of anisotropic polycrystalline ice with a self-consistent approach, Acta Mater., 45, 4823-4834 (1997)
[7] deBotton, G.; Ponte Castañeda, P., Elastoplastic constitutive relations for fiber-reinforced solids, Int. J. Solids Struct., 30, 1865-1890 (1993) · Zbl 0782.73006
[8] deBotton, G.; Ponte Castañeda, P., Variational estimates for the creep behavior of polycrystals, Proc. R. Soc. Lond. A, 448, 121-142 (1995) · Zbl 0829.73077
[9] Duval, P.; Ashby, M. F.; Anderman, I., Rate-controlling processes in the creep of polycrystalline ice, J. Phys. Chem., 87, 4066-4074 (1983)
[10] Gilormini, P., A critical evaluation of various nonlinear extensions of the self-consistent model., (Pineau, A.; Zaoui, A., Micromechanics of plasticity and damage of multiphase materials (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 67-74
[11] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11, 127-140 (1963) · Zbl 0108.36902
[12] Hervé, E.; Zaoui, A., Modelling the effective behaviour of non-linear matrix inclusion composites, Eur. J. Mech., A/Solids, 9, 6, 505-515 (1990) · Zbl 0729.73910
[13] Hill, R., The elastic behavior of a crystalline aggregate, Proc. Phys. Soc. Lond., 65, 349-354 (1952)
[14] Hill, R., Continuum micro-mechanics of elastoplastic polycrystals, J. Mech. Phys. Solids, 13, 89-101 (1965) · Zbl 0127.15302
[15] Hutchinson, J. W., Elastic-plastic behaviour of polycrystalline metals and composites, Proc. R. Soc. Lond. A, 319, 247-272 (1970)
[16] Hutchinson, J. W., Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. Lond. A, 348, 101-127 (1976) · Zbl 0319.73059
[17] Hutchinson, J. W., Creep and plasticity of hexagonal polycrystals as related to single crystal slip, Metall. Trans. A, 8, 1465-1469 (1977)
[18] Kröner, E., Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Z. Phys., 151, 504-518 (1958)
[19] Kröner, E., Zur plastischen Verformung des Vielkristalls, Acta Metall., 9, 155-161 (1961)
[20] Kröner, E., Bounds for effective elastic moduli of disordered materials, J. Mech. Phys. Solids, 25, 137-155 (1977) · Zbl 0359.73020
[21] Laws, N., On the thermostatics of composite materials, J. Mech. Phys. Solids, 21, 9-17 (1973)
[22] Lebensohn, R.; Tomé, C. N., A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall. Mater., 41, 2611-2624 (1993)
[23] Levin, V., Thermal expansion coefficients of heterogeneous materials, Mekh. Tverd. Tela, 2, 83-94 (1967)
[24] Masson, R.; Bornert, M.; Suquet, P.; Zaoui, A., An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals, J. Mech. Phys. Solids, 48, 1203-1227 (2000) · Zbl 0984.74068
[25] Molinari, A.; Canova, G. R.; Ahzi, S., A self-consistent approach of the large deformation polycrystal viscoplasticity, Acta Metall., 35, 2983-2994 (1987)
[26] Nebozhyn, M. V.; Gilormini, P.; Ponte Castañeda, P., Variational self-consistent estimates for viscoplastic polycrystals with highly anisotropic grains, C.R. Acad. Sci. Paris, Série IIb, 328, 11-17 (2000) · Zbl 0986.74018
[27] Nebozhyn, M. V.; Gilormini, P.; Ponte Castañeda, P., Variational self-consistent estimates for cubic viscoplastic polycrystals: the effects of grain anisotropy and shape, J. Mech. Phys. Solids, 49, 313-340 (2001) · Zbl 1048.74010
[28] Ponte Castañeda, P., The effective mechanical properties of nonlinear isotropic composites, J. Mech. Phys. Solids, 39, 45-71 (1991) · Zbl 0734.73052
[29] Ponte Castañeda, P., Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys. Solids, 44, 6, 827-862 (1996) · Zbl 1054.74708
[30] Ponte Castañeda, P.; Suquet, P., Nonlinear composites, Adv. Appl. Mech., 34, 171-302 (1998) · Zbl 0889.73049
[31] Ponte Castañeda, P.; Willis, J. R., Variational second-order estimates for nonlinear composites, Proc. R. Soc. Lond. A, 455, 1799-1811 (1999) · Zbl 0984.74071
[32] Qiu, Y. P.; Weng, G. J., The influence of inclusion shape on the overall elastoplastic behavior of a two-phase isotropic composite, Int. J. Solids Struct., 27, 1537-1550 (1991) · Zbl 0825.73420
[33] Suquet, P.; Ponte Castañeda, P., Small-contrast perturbation expansions for the effective properties of nonlinear composites, C. R. Acad. Sci. Paris, Série II, 317, 1515-1522 (1993) · Zbl 0844.73052
[34] Talbot, D. R.S.; Willis, J. R., Variational principles for inhomogeneous non-linear media, IMA J. Appl. Math., 35, 39-54 (1985) · Zbl 0588.73025
[35] Taylor, G. I., Plastic strain in Metals, J. Inst. Metals, 62, 307-315 (1938)
[36] Willis, J. R., Bounds and self-consistent estimates for the overall properties of anisotropic composites, J. Mech. Phys. Solids, 25, 185-202 (1977) · Zbl 0363.73014
[37] Willis, J. R., Variational and related methods for the overall properties of composites, Adv. Appl. Mech., 21, 1-78 (1981) · Zbl 0476.73053
[38] Willis, J. R., Upper and lower bounds for nonlinear composite behavior, Mat. Sci. Eng. A, 175, 7-14 (1994)
[39] Zaoui, A., Masson, R., 2000. Micromechanics-based modeling of plastic polycrystals: an affine formulation. Mat. Sci. Eng. A285, 418-424.; Zaoui, A., Masson, R., 2000. Micromechanics-based modeling of plastic polycrystals: an affine formulation. Mat. Sci. Eng. A285, 418-424.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.