×

The Krull-Gabriel dimension of a serial ring. (English) Zbl 1047.16012

From the introduction: In this paper, we consider the Krull-Gabriel dimension, \(KG\), of a serial ring. In particular, we prove that for a serial ring \(R\), \(KG(R)\) exists if and only if the lattice of right (left) ideals of \(R\) has Krull dimension (in the sense of Gabriel and Rentschler). Moreover, if the Krull dimension of \(R\) is equal to \(\alpha\), then \(KG(R)\) does not exceed \(\alpha\oplus\alpha\), and we show that it is precisely \(\alpha\oplus\alpha\) for some classes of serial rings. Here \(\alpha\oplus\alpha\) stands for the Cantor sum of \(\alpha\) and \(\alpha\).…
All the results of this paper are tightly connected with the calculation of the Cantor-Bendixson rank of the Ziegler spectrum over a serial ring \(R\), \(CB(Zg_R)\), made by Puninski (1999) and Reynders (1999). In fact, we will prove that the so-called isolation property holds true over any serial ring \(R\): every isolated point in the Ziegler spectrum of any theory of \(R\)-modules is isolated by a minimal pair. An immediate consequence of this result is that the following invariants of a serial ring \(R\) are equal: (1) the Krull-Gabriel dimension of \(R\); (2) the Cantor-Bendixson rank of the Ziegler spectrum over \(R\); (3) the \(m\)-dimension of the lattice of all positive-primitive formulae over \(R\).

MSC:

16P60 Chain conditions on annihilators and summands: Goldie-type conditions
16L30 Noncommutative local and semilocal rings, perfect rings
16B70 Applications of logic in associative algebras
16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
03C60 Model-theoretic algebra
Full Text: DOI

References:

[1] DOI: 10.1016/S0022-4049(99)00107-3 · Zbl 0973.18005 · doi:10.1016/S0022-4049(99)00107-3
[2] DOI: 10.1007/BF01171701 · Zbl 0593.16022 · doi:10.1007/BF01171701
[3] Generalov A.I., Zapiski Nauchnych Seminarov LOMI 236 pp 73– (1997)
[4] Grätzer G., General Lattice Theory (1978)
[5] DOI: 10.1006/jabr.1997.6920 · Zbl 0873.16009 · doi:10.1006/jabr.1997.6920
[6] DOI: 10.1112/S0024611598000094 · Zbl 0908.16016 · doi:10.1112/S0024611598000094
[7] Krause H., Mem. Amer. Math. Soc. 707 (2001)
[8] Prest M., London Math. Soc. Lecture Note Series 130, in: Model Theory and Modules (1987)
[9] Prest M., Trends in Math., in: Infinite Length Modules pp 369– (2000) · doi:10.1007/978-3-0348-8426-6_19
[10] DOI: 10.2307/2586792 · Zbl 0961.03036 · doi:10.2307/2586792
[11] Puninski G., Mathematics and its applications, in: Serial Rings (2001) · Zbl 1025.16005 · doi:10.1007/978-94-010-0652-1
[12] DOI: 10.1080/00927879908826583 · Zbl 0944.16021 · doi:10.1080/00927879908826583
[13] DOI: 10.1007/PL00004799 · Zbl 0960.16011 · doi:10.1007/PL00004799
[14] Tuganbaev A.A., Mathematics and its applications 449, in: Semidistributive Modules and Rings (1998) · doi:10.1007/978-94-011-5086-6
[15] DOI: 10.1016/0168-0072(84)90014-9 · Zbl 0593.16019 · doi:10.1016/0168-0072(84)90014-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.