×

Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction–diffusion models. (English) Zbl 1045.45009

The author extends a lot of results obtained earlier in the theory of asymptotic speeds of spread and monotone traveling waves to the class of nonlinear integral equations of the form \[ u(t,x)= u_0(t, x)+ \int^t_0 \int_{\mathbb R^n} F(u(t- s,x- y),s,y)\,dy\,ds,\tag{1} \] where \(F(u,s,y)= F: \mathbb R^2_+\times \mathbb R^n\to \mathbb R\) is continuous in \(u\) and Borel measurable in \((s,y)\). A lot of results concerning (1) are obtained under various additional assumptions concerning the function \(F\). The obtained results are applied to some time-delayed reaction and diffusion population models.

MSC:

45G10 Other nonlinear integral equations
35K57 Reaction-diffusion equations
92D25 Population dynamics (general)
45M05 Asymptotics of solutions to integral equations
45M20 Positive solutions of integral equations
35R10 Partial functional-differential equations
Full Text: DOI

References:

[1] Al-Omari, J.; Gourley, S. A., Monotone travelling fronts in an age-structured reaction-diffusion model of a single species, J. Math. Biol., 45, 294-312 (2002) · Zbl 1013.92032
[2] Aronson, D. G., The asymptotic speed of propagation of a simple epidemic, (Fitzgibbon, W. E.; Walker, H. F., Nonlinear Diffusion (1977), Pitman: Pitman London), 1-23 · Zbl 0361.35011
[3] Aronson, D. G.; Weinberger, H. F., Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, (Goldstein, J. A., Partial Differential Equations and Related Topics. Partial Differential Equations and Related Topics, Lecture Notes in Mathematics, Vol. 446 (1975), Springer: Springer Berlin), 5-49 · Zbl 0325.35050
[4] Aronson, D. G.; Weinberger, H. F., Multidimensional nonlinear diffusion arising in population dynamics, Adv. in Math., 30, 33-76 (1978) · Zbl 0407.92014
[5] Atkinson, C.; Reuter, G. E.H., Deterministic epidemic waves, Math. Proc. Cambridge Philos. Soc., 80, 315-330 (1976) · Zbl 0338.92019
[6] Brown, K. J.; Carr, J., Deterministic epidemic waves of critical velocity, Math. Proc. Cambridge Philos. Soc., 81, 431-433 (1977) · Zbl 0351.92022
[7] Capasso, V.; Maddalena, L., Convergence to equilibrium states for a reaction-diffusion system modeling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 13, 173-184 (1981) · Zbl 0468.92016
[8] Capasso, V.; Maddalena, L., Saddle point behavior for a reaction-diffusion systemapplication to a class of epidemic models, Math. Comput. Simulation, 24, 540-547 (1982) · Zbl 0502.92018
[9] Capasso, V.; Thieme, H. R., A threshold theorem for a reaction-diffusion epidemic system, (Aftabizadeh, A. R., Differential Equations and Applications (1989), Ohio University Press: Ohio University Press Athens, OH), 128-133 · Zbl 0714.92020
[10] Capasso, V.; Wilson, R. E., Analysis of a reaction-diffusion modeling man-environment-man epidemics, SIAM J. Appl. Math., 57, 327-346 (1997) · Zbl 0872.35053
[11] Diekmann, O., Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol., 6, 109-130 (1978) · Zbl 0415.92020
[12] Diekmann, O., Run for your life, a note on the asymptotic speed of propagation of an epidemic, J. Differential Equations, 33, 58-73 (1979) · Zbl 0377.45007
[13] Diekmann, O.; Kaper, H. G., On the bounded solutions of a nonlinear convolution equation, Nonlinear Anal.: Theory, Methods Appl., 2, 721-737 (1978) · Zbl 0433.92028
[14] Garroni, M. G.; Menaldi, J. L., Green Functions for Second Order Parabolic Integro-differential Problems (1992), Longman Scientific & Technical: Longman Scientific & Technical Harlow · Zbl 0806.45007
[15] S.A. Gourley, Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, preprint, 2002.; S.A. Gourley, Y. Kuang, Wavefronts and global stability in a time-delayed population model with stage structure, preprint, 2002. · Zbl 1047.92037
[16] Lewis, M. A.; Li, B.; Weinberger, H. F., Spreading speed and linear determinacy for two-species competition models, J. Math. Biol., 45, 219-233 (2002) · Zbl 1032.92031
[17] Lui, R., Biological growth and spread modeled by systems of recursions. I. Mathematical theory, Math. Biosci., 93, 269-295 (1989) · Zbl 0706.92014
[18] Lui, R., Biological growth and spread modeled by systems of recursions. II. Biological theory, Math. Biosci., 93, 297-312 (1989) · Zbl 0706.92015
[19] Ma, S., Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem, J. Differential Equations, 171, 294-314 (2001) · Zbl 0988.34053
[20] Martin, R. H.; Smith, H. L., Abstract functional differential equations and reaction-diffusion systems, Trans. Amer. Math. Soc., 321, 1-44 (1990) · Zbl 0722.35046
[21] Murray, J. D., Mathematical Biology (1989), Springer: Springer New York · Zbl 0682.92001
[22] Radcliffe, J.; Rass, L., Wave solutions for the deterministic non-reducible \(n\)-type epidemic, J. Math. Biol., 17, 45-66 (1983) · Zbl 0525.92019
[23] Radcliffe, J.; Rass, L., The uniqueness of wave solutions for the deterministic non-reducible \(n\)-type epidemic, J. Math. Biol., 19, 303-308 (1984) · Zbl 0539.92027
[24] Radcliffe, J.; Rass, L., The asymptotic spread of propagation of the deterministic non-reducible \(n\)-type epidemic, J. Math. Biol., 23, 341-359 (1986) · Zbl 0606.92019
[25] Schaaf, K. W., Asymptotic behavior and traveling wave solutions for parabolic functional differential equations, Trans. Amer. Math. Soc., 302, 587-615 (1987) · Zbl 0637.35082
[26] Schumacher, Travelling front solutions for integrodifferential equations II, in: W. Jäger, H. Rost, P. Tautu (Eds.), Biological Growth and Spread, Lecture Notes in Biomathematics, Vol. 38, Springer, 1980, pp. 296-309.; Schumacher, Travelling front solutions for integrodifferential equations II, in: W. Jäger, H. Rost, P. Tautu (Eds.), Biological Growth and Spread, Lecture Notes in Biomathematics, Vol. 38, Springer, 1980, pp. 296-309.
[27] Smith, H. L.; Thieme, H. R., Strongly order preserving semiflows generated by functional differential equations, J. Differential Equations, 93, 332-363 (1991) · Zbl 0735.34065
[28] Smith, H. L.; Zhao, X.-Q., Global asymptotic stability of traveling waves in delayed reaction-diffusion equations, SIAM J. Math. Anal., 31, 514-534 (2000) · Zbl 0941.35125
[29] So, J. W.-H.; Wu, J.; Zou, X., A reaction-diffusion model for a single species with age structure. I. Travelling wavefronts on unbounded domains, Proc. Roy. Soc. London Ser. A, 457, 1841-1853 (2001) · Zbl 0999.92029
[30] Thieme, H. R., Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations, J. Reine Angew. Math., 306, 94-121 (1979) · Zbl 0395.45010
[31] Thieme, H. R., Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread, J. Math. Biol., 8, 173-187 (1979) · Zbl 0417.92022
[32] Thieme, H. R., On a class of Hammerstein integral equations, Manuscripta Math., 29, 49-84 (1979) · Zbl 0417.45003
[33] Thieme, H. R., Mathematics in Population Biology (2003), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1054.92042
[34] Thieme, H. R.; Zhao, X.-Q., A nonlocal delayed and diffusive predator-prey model, Nonlinear Anal.: Real World Appl., 2, 145-160 (2001) · Zbl 1113.92319
[35] van den Bosch, F.; Metz, J. A.J.; Diekmann, O., The velocity of spatial population expansion, J. Math. Biol., 28, 529-565 (1990) · Zbl 0732.92026
[36] A.I. Volpert, V.A. Volpert, V.A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translation of Mathematical Monographs, Vol. 140, American Mathematical Society, Providence, RI, 1994.; A.I. Volpert, V.A. Volpert, V.A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translation of Mathematical Monographs, Vol. 140, American Mathematical Society, Providence, RI, 1994. · Zbl 0805.35143
[37] Weinberger, H. F., Some deterministic models for the spread of genetic and other alterations, (Jäger, W.; Rost, H.; Tautu, P., Biological Growth and Spread. Biological Growth and Spread, Lecture Notes in Biomathematics, Vol. 38 (1981), Springer: Springer Berlin), 320-333 · Zbl 0222.31008
[38] Weinberger, H. F., Long time behavior of a class of biological models, SIAM J. Math. Anal., 13, 353-396 (1982) · Zbl 0529.92010
[39] Weinberger, H. F.; Lewis, M. A.; Li, B., Analysis of linear determinacy for spread in cooperative models, J. Math. Biol., 45, 183-218 (2002) · Zbl 1023.92040
[40] Wu, J., Theory and Applications of Partial Functional Differential Equations (1996), Springer: Springer New York · Zbl 0870.35116
[41] Wu, J.; Zhao, X.-Q., Diffusive monotonicity and threshold dynamics of delayed reaction diffusion equations, J. Differential Equations, 186, 470-484 (2002) · Zbl 1022.35082
[42] Wu, J.; Zou, X., Traveling wave fronts of reaction-diffusion systems with delay, J. Dyn. Differential Equations, 13, 651-687 (2001) · Zbl 0996.34053
[43] X.-Q. Zhao, W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dynam. Systems Ser. B., in press.; X.-Q. Zhao, W. Wang, Fisher waves in an epidemic model, Discrete Contin. Dynam. Systems Ser. B., in press. · Zbl 1097.34022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.