×

Rescaled voter models converge to super-Brownian motion. (English) Zbl 1044.60092

Summary: We show that a sequence of voter models, suitably rescaled in space and time, converges weakly to super-Brownian motion. The result includes both nearest neighbor and longer range voter models and complements a limit theorem of C. Müller and R. Tribe [Probab. Theory Relat. Fields 102, No. 4, 519–545 (1995; Zbl 0827.60050) in one dimension.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60F05 Central limit and other weak theorems
60G57 Random measures
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)

Citations:

Zbl 0827.60050

References:

[1] Bramson, M., Cox, J. T. and Le Gall, J.-F. (1999). Super-Brownian limits of voter model clusters. Unpublished manuscript. · Zbl 1029.60078
[2] Bramson, M., Durrett, R. and Swindle, G. (1989). Statistical mechanics of crabgrass. Ann. Probab. 17 441-481. · Zbl 0682.60090 · doi:10.1214/aop/1176991410
[3] Bramson, M. and Griffeath, D. (1980).
[4] Burkholder, D. L. (1973). Distribution function inequalities for martingales. Ann. Probab. 1 19-42. · Zbl 0301.60035 · doi:10.1214/aop/1176997023
[5] Chung, K. L. (1967). Markov Chains with Stationary Transition Probabilities. Springer, New York. · Zbl 0146.38401
[6] Cox, J. T. and Durrett, R. (1995). Hybrid zones and voter model interfaces. Bernoulli 1 343-370. · Zbl 0849.60088 · doi:10.2307/3318488
[7] Cox, J. T. and Griffeath, D. (1986). Diffusive clustering in the two dimensional voter model. Ann. Probab. 14 347-370. Dawson, D. A. (1992) Infinitely divisible random measures and superprocesses. In Stochastic Analysis and Related Topics 1-129. Birkhäuser, Boston. · Zbl 0658.60131
[8] Dawson, D. A. (1993). Measure-valued Markov processes. Ecole d’été de Probabilités de Saint Flour XXI. Lecture Notes in Math. 1541 1-260. Springer, New York. · Zbl 0799.60080
[9] Dawson, D. A. and Hochberg, K. J. (1979). The carrying dimension of a stochastic measure diffusion. Ann. Probab. 7 693-703. · Zbl 0411.60084 · doi:10.1214/aop/1176994991
[10] Dawson, D. A. and Perkins, E. (1991). Historical processes. Mem. Amer. Math. Soc. 454. · Zbl 0754.60062
[11] Dawson, D. A. and Perkins, E. (1998). Measure-valued processes and renormalization of branching particle systems. In Stochastic Partial Differential Equations: Six Perspectives (R. Carmona and B. Rozovskii, eds.) 45-106 Amer. Math. Soc., Providence, RI. · Zbl 0934.60078
[12] Derbez, E. and Slade, G. (1997). Lattice trees and super-Brownian motion. Canad. Math. Bull. 40 19-38. · Zbl 0874.60091 · doi:10.4153/CMB-1997-003-8
[13] Derbez, E., van der Hofstad, R. and Slade, G. (1998). Unpublished manuscript.
[14] Durrett, R. (1995). Ten lectures on particle systems. Ecole d’été de Probabilités de Saint Flour XXIII. Lecture Notes in Math. 1608 97-201. Springer, New York. · Zbl 0840.60088
[15] Durrett, R. and Perkins, E. (1999). Rescaled contact processes converge to super-Brownian motion for d 2. Probab. Theory Related Fields. · Zbl 0953.60093 · doi:10.1007/s004400050228
[16] Dynkin, E. B. (1994). An Introduction to Branching Measure-Valued Processes. Amer. Math. Soc., Providence. · Zbl 0824.60001
[17] Ethier, S. and Kurtz, T. (1986). Markov Processes: Characterization and Convergence. Wiley, New York. · Zbl 0592.60049
[18] Fitzsimmons, P. J. (1988). Construction and regularity of measure-valued Markov branching processes. Israel J. Math. 64 337-361. · Zbl 0673.60089 · doi:10.1007/BF02882426
[19] Griffeath, D. (1978). Additive and Cancellative Interacting Particle Systems. Lecture Notes in Math. 724. Springer, Berlin. · Zbl 0412.60095 · doi:10.1007/BFb0067306
[20] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes. Springer, Berlin. · Zbl 0635.60021
[21] Jakubowski, A. (1986). On the Skorohod topology. Ann. Inst. H. Poincaré Math. Statist. Probab. 22 263-285. · Zbl 0609.60005
[22] Konno, N. and Shiga, T. (1988). Stochastic differential equations for some measure-valued diffusions. Probab. Theory Related Fields 79 201-225. · Zbl 0631.60058 · doi:10.1007/BF00320919
[23] Kurtz, T. and Protter, P. (1996). Weak convergence of stochastic integrals and differential equations. Infinite-dimensional case. Probabilistic Models for Nonlinear Partial Differential Equations. Lecture Notes in Math. 1627 197-285. Springer, New York. · Zbl 0862.60042 · doi:10.1007/BFb0093176
[24] Le Gall, J.-F. (1994). Mouvement brownien, processus du branchement et superprocessus. Prepublication 247 du Laboratoire de Probabilités.
[25] Liggett, T. (1985). Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[26] Mueller, C. and Tribe, R. (1995). Stochastic PDE’s arising from the long range contact process and long range voter model. Probab. Theory Related Fields 102 519-546. · Zbl 0827.60050 · doi:10.1007/BF01198848
[27] Presutti, E. and Spohn, H. (1983). Hydrodynamics of the voter model. Ann. Probab. 11 867-875. · Zbl 0527.60094 · doi:10.1214/aop/1176993437
[28] Reimers, M. (1989). One dimensional stochastic partial differential equations and the branching measure valued diffusions. Probab. Theory Related Fields 81 319-340. · Zbl 0651.60069 · doi:10.1007/BF00340057
[29] Spitzer, F. (1976). Principles of Random Walk, 2nd ed. Springer, New York. · Zbl 0359.60003
[30] Watanabe, S. (1968). A limit theorem of branching processes and continuous state branching. J. Math. Kyoto Univ. 8 141-167. · Zbl 0159.46201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.