×

Binary relations as single primitive notions for hyperbolic three-space and the inversive plane. (English) Zbl 1044.51012

Summary: By interpreting J. A. Lester’s [Can. Math. Bull. 34, No. 4, 492–498 (1991; Zbl 0757.51005)] result on inversive-distance-preserving mappings as an axiomatizability statement, and by using the Liebmann isomorphism between the inversive plane and hyperbolic three-space, we point out that hyperbolic three-spaces (and inversive geometry) coordinatized by Euclidean fields can be axiomatized with planes (or circles) as variables, by using only the plane-orthogonality (or circle-orthogonality) predicate \(\perp_p\) (or \(\perp_c)\), or by using only the predicate \(\delta'\) (or \(\delta)\), where \(\delta'(p,p')\) (or \(\delta(A,B))\) is interpreted as ‘the distance between the planes \(p\) and \(p'\) is equal to the length of the segment \(s\) whose angle of parallelism is \(\frac{\pi} {4}\) (i.e. \(\Pi(s)=\frac {\pi}{4})\)’ (or as ‘the numerical distance between the disjoint circles \(A\) and \(B\) has the value \(\rho\) which corresponds to \(s\) via Liebmann’s isomorphism’).

MSC:

51M10 Hyperbolic and elliptic geometries (general) and generalizations
51F99 Metric geometry
51B10 Möbius geometries
Full Text: DOI

References:

[1] Benz, W., Vorlesungen über Geometrie der Algebren (1973), Springer-Verlag: Springer-Verlag Berlin · Zbl 0258.50024
[2] Brannan, D. A.; Esplen, M. F.; Gray, J. J., Geometry (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0926.51001
[3] Coxeter, H. S.M., The inversive plane and hyperbolic space, Abh. Math. Sem. Univ. Hamburg, 29, 217-242 (1966) · Zbl 0139.37903
[4] Coxeter, H. S.M., Numerical distances among the circles in a loxodromic sequence, Nieuw Arch. Wisk., 16, 4, 1-9 (1998) · Zbl 0968.51011
[5] Coxeter, H. S.M., Numerical distances among the spheres in a loxodromic sequence, Math. Intelligencer, 19, 41-47 (1997) · Zbl 0963.51008
[6] Coxeter, H. S.M., Non-Euclidean geometry, (MAA Spectrum. Mathematical Association of America (1998)), Washington, DC · Zbl 0909.51003
[7] Ewald, G., Über den Begriff der Orthogonalität in der Kreisgeometrie, Math. Ann., 131, 463-469 (1956) · Zbl 0072.15801
[8] Hodges, W., Model Theory, Encyclopedia of Mathematics and its Applications, 42 (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0789.03031
[9] Lester, J. A., A Beckman-Quarles type theorem for Coxeter’s inversive distance, Canad. Math. Bull., 34, 492-498 (1991) · Zbl 0757.51005
[10] Liebmann, H., Nichteuklidische Geometrie (1905), B. G. Teubner: B. G. Teubner Leipzig · JFM 36.0520.01
[11] List, K., On orthogonality-preserving Plücker transformations of hyperbolic spaces, Abh. Math. Sem. Univ. Hamburg, 70 (2000) · Zbl 1002.51009
[12] Makowiecka, H., On minimal systems of primitives in elementary Euclidean geometry, Bull. Acad. Polon. Sci. Sér Sci. Math. Astronom. Phys., 25, 269-277 (1977) · Zbl 0356.50002
[13] Pambuccian, V., Simplicity, Notre Dame J. Formal Logic, 29, 396-411 (1988) · Zbl 0669.03005
[14] Pambuccian, V., A logical look at characterizations of geometric transformations under mild hypotheses, Indag. Math., 11, 453-462 (2000) · Zbl 0987.51010
[15] Pambuccian, V. - Aufbau der hyperbolischen Geometrie aus dem Geradenorthogonalitätsbegriff. J. Geom., submitted.; Pambuccian, V. - Aufbau der hyperbolischen Geometrie aus dem Geradenorthogonalitätsbegriff. J. Geom., submitted.
[16] Prazmowski, K., Various systems of primitive notions for Euclidean geometry based on the notion of circle, Bull. Polish Acad. Sci. Math., 31, 23-29 (1983) · Zbl 0539.51012
[17] Robinson, R. M., Binary relations as primitive notions in elementary geometry, (Henkin, L.; Suppes, P.; Tarski, A., The axiomatic method (1959), North-Holland: North-Holland Amsterdam), 68-85 · Zbl 0088.36901
[18] Schwabhäuser, W.; Szczerba, L. W., Relations on lines as primitive notions for Euclidean geometry, Fund. Math., 87, 3, 283 (1975), (errata) · Zbl 0296.50001
[19] Schwabhäuser, W.; Szmielew, W.; Tarski, A., Metamathematische Methoden in der Geometrie (1983), Springer-Verlag: Springer-Verlag Berlin · Zbl 0564.51001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.