×

Polynomial decay for the energy with an acoustic boundary condition. (English) Zbl 1043.35036

Summary: We establish the polynomial decay for the energy of a wave motion in a bounded domain \(\Omega \subset \mathbb R^3\) with a smooth boundary \(\partial \Omega = \Gamma\), on a part \(\Gamma_0\) of which an acoustic boundary condition in subjected. The multiplicative techniques and energy method are used.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
76Q05 Hydro- and aero-acoustics
35L05 Wave equation
35L20 Initial-boundary value problems for second-order hyperbolic equations
Full Text: DOI

References:

[1] Beale, J. T., Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 25, 895-917 (1976) · Zbl 0325.35060
[2] Beale, J. T., Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 26, 199-222 (1977) · Zbl 0332.35053
[3] Beale, J. T.; Rosencrans, S. I., Acoustic boundary conditions, Bull. Amer. Math. Soc., 80, 1276-1278 (1974) · Zbl 0294.35045
[4] Rivera, J. E.M; Andrade, D., A boundary condition with memory in elasticity, Appl. Math. Lett., 13, 2, 115-121 (2000) · Zbl 0971.74014
[5] Morse, P. M.; Ingard, K. U., Theoretical Acoustics (1968), McGraw-Hill: McGraw-Hill New York
[6] Li, T. T.; Chen, Y. M., Solutions réguliéres globales du probléme de Cauchy pour les équations des ondes non linéaires, C. R. Acad. Sci. Paris Sér. I. Math., 305, 171-174 (1987) · Zbl 0643.35065
[7] Li, T. T.; Chen, Y. M., Nonlinear Evolution Equations (1989), Science Press, (In Chinese)
[8] Li, T. T.; Chen, Y. M., Global classical solutions for nonlinear evolution equations, (Pitman Monographs and Surveys in Pure and Applied Mathematics, Volume 45 (1992), Longman Scientific & Technical: Longman Scientific & Technical New York), Copublished in the United States with · Zbl 0787.35002
[9] Qin, Y., Global existence of a classical solution to a nonlinear wave equation, Acta Math. Sci., 17, 121-128 (1997), (In Chinese) · Zbl 0895.35066
[10] Rivera, J. E.M; Racke, R., Thermo-magneto-elasticity-large time behaviour for linear system, Advances in Differential Equations, 6, 359-384 (2001) · Zbl 1023.74017
[11] J.E.M. Rivera and R. Racke, Polynomial stability in two-dimensional magneto-elasticity, IMA J. Appl. Math.; J.E.M. Rivera and R. Racke, Polynomial stability in two-dimensional magneto-elasticity, IMA J. Appl. Math. · Zbl 1029.74020
[12] Rivera, J. E.M; Oliveira, M. L., Stability in inhomogenous and anisotropic thermoplasticity, Bolletino della Unione Matemática Italiana, 7, 115-127 (1997) · Zbl 0891.73012
[13] Lions, J. L.; Magenes, E., (Non-Homogeneous Boundary Value Problems and Applications, Volume 1 (1972), Springer-Verlag: Springer-Verlag New York) · Zbl 0227.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.