×

Observer-based control of piecewise-affine systems. (English) Zbl 1040.93034

Summary: This paper presents a new synthesis method for both state and dynamic output feedback control of a class of hybrid systems called piecewise-affine (PWA) systems. The synthesis procedure delivers stabilizing controllers that can be proven to give either asymptotic or exponential convergence rates. The synthesis method builds on existing PWA stability analysis tools by transforming the design into a closed-loop analysis problem wherein the controller parameters are unknown. More specifically, the proposed technique formulates the search for a piecewise-quadratic control Lyapunov function and a piecewise-affine control law as an optimization problem subject to linear constraints and a bilinear matrix inequality. The linear constraints in the synthesis guarantee that sliding modes are not generated at the switching. The resulting optimization problem is known to be NP hard, but suboptimal solutions can be obtained using the three iterative algorithms presented in the paper. The new synthesis technique allows controllers to be designed with a specified structure, such as a combined regulator and observer. The observers in these controllers then enable switching based on state estimates rather than on measured outputs. The overall design approach, including a comparison of the synthesis algorithms and the performance of the resulting controllers, is clearly demonstrated in four simulation examples.

MSC:

93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93B52 Feedback control
Full Text: DOI

References:

[1] ANDRONOV A., Theory of Osculations (1949)
[2] DOI: 10.2514/2.4498 · doi:10.2514/2.4498
[3] BEMPORAD, A., BORRELLI, F. and MORARI, M. Optimal controllers for hybrid systems: stability and piecewise linear explicit form. Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia. pp.1810–1815.
[4] DOI: 10.1016/S0005-1098(98)00178-2 · Zbl 1049.93514 · doi:10.1016/S0005-1098(98)00178-2
[5] DOI: 10.1016/S0005-1098(98)00175-7 · Zbl 0943.93044 · doi:10.1016/S0005-1098(98)00175-7
[6] BOKHOVEN W. G. V., Piecewise Linear Modelling and Analysis (1981)
[7] BOYD S., Linear Matrix Inequalities in System and Control Theory, volume 15 of Studies in Applied Mathematics (1994) · Zbl 0816.93004
[8] DOI: 10.1007/BFb0020945 · doi:10.1007/BFb0020945
[9] DOI: 10.1109/PROC.1977.10589 · doi:10.1109/PROC.1977.10589
[10] DOI: 10.1109/5.871309 · doi:10.1109/5.871309
[11] FERRARI-TRECATE, G., MIGNONE, D. and MORARI, M. Moving horizon estimation for hybrid systems. Proceedings of the American Control Conference. Chicago. pp.1684–1688. · Zbl 1364.93768
[12] GOH, K. C., LY, J. H., TURAND, L. and SAFONOV, M. G. Biaffine matrix inequality properties and computational methods. Proceedings of the American Control Conference. Baltimore. pp.850–855.
[13] DOI: 10.1109/9.917657 · Zbl 1010.93093 · doi:10.1109/9.917657
[14] HASSIBI, A. and BOYD, S. P. Quadratic stabilization and control of piecewise-linear systems. Proceedings of the American Control Conference. Philadelphia. pp.3659–3664.
[15] HASSIBI, A., BOYD, S. P. and HOW, J. P. A class of Lyapunov functional for analyzing hybrid dynamical systems. Proceedings of the American Control Conference. San Diego. pp.2455–2460.
[16] HASSIBI, A., How, J. and BOYD, S. A path-following method for solving bmi problems in control. Proceedings of the American Control Conference. San Diego. pp.1385–1389.
[17] IMSLAND, L., SLUPPHAUG, O. and FOSS, B. Piecewise affine obsever based robust controllers for constrained non-linear systems. European Control Conference. Porto, Portugal. pp.1876–1881.
[18] JOHANSSON, M. 1999. ”Piecewise linear control systems”. Lund Institute of Technology. PhD thesis
[19] DOI: 10.1109/9.664157 · Zbl 0905.93039 · doi:10.1109/9.664157
[20] DOI: 10.1109/9.847100 · Zbl 0969.49016 · doi:10.1109/9.847100
[21] JULIAN, P. 1999. ”A high level canonical piecewise linear representation using a simplicial partition: theory and applications”. Argentina: Universidad National del Sur. PhD thesis
[22] KALMAN R., Transactions of AIEE Part II: Applications and Industry 73 pp 383– (1954)
[23] KANTNER, M. Robust stability of piecewise linear discrete time systems. Proceedings of the American Control Conference. Alburquerque. pp.1241–1245.
[24] NESTEROV Y., Studies in Applied Mathematics 13, in: Interior-point Polynomial Methods in Convex Programming (1994) · Zbl 0824.90112
[25] DOI: 10.1080/00207170110049873 · Zbl 1015.93048 · doi:10.1080/00207170110049873
[26] PELExms, P. and DECARLO, R. A. Asymptotic stability of m-switched systems using Lyapunov-like functions. Proceedings of the American Control Conference. Boston. pp.1679–1684.
[27] PETTERSSON, S. 1999. ”Analysis and design of hybrid systems”. Charniers University of Technology. PhD thesis
[28] PETTIT N. B. O. L., Analysis of Piecewise Linear Dynamical Systems (1995) · Zbl 0875.93202
[29] POPOV V., Automation and Remote Control 22 pp 857– (1961)
[30] RODRIGUES, L. 2002. ”Dynamic output feedback controller synthesis for piecewise-affine systems”. Stanford University. PhD thesis
[31] RODRIGUES, L., HASSIBI, A. and How, J. Output feedback controller synthesis for piecewise-affine systems with multiple equilibria. Proceedings of the American Control Conference. Chicago. pp.1784–1789.
[32] RODRIGUES, L. and HOW, J. Automated control design for a piecewise-affine approximation of a class of nonlinear systems. Proceedings of the American Control Conference. Arlington, VA. pp.3189–3194.
[33] DOI: 10.1016/S0005-1098(00)00058-3 · Zbl 0976.93002 · doi:10.1016/S0005-1098(00)00058-3
[34] DOI: 10.1007/3-540-49163-5_4 · doi:10.1007/3-540-49163-5_4
[35] SCHWARTZ J. W., Transactions of ATEE 72 pp 401– (1953)
[36] SLUPPHAUG, O. 1999. ”On robust constrained nonlinear control and hybrid control: BMI and MPC based statefeedback schemes”. Norwegian University of Science and Technology. PhD thesis
[37] DOI: 10.1109/TAC.1981.1102596 · Zbl 0474.93039 · doi:10.1109/TAC.1981.1102596
[38] DOI: 10.1016/S0005-1098(98)00147-2 · Zbl 0945.93519 · doi:10.1016/S0005-1098(98)00147-2
[39] DOI: 10.1017/CBO9780511546150 · doi:10.1017/CBO9780511546150
[40] UTKIN V. I., Sliding Modes in Control and Optimization (1992) · Zbl 0748.93044 · doi:10.1007/978-3-642-84379-2
[41] WU S.-P., Chapter 2 of Recent Advances in LMI Methods for Control (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.