×

Fractal space, cosmic strings and spontaneous symmetry breaking. (English) Zbl 1040.83520


MSC:

83E30 String and superstring theories in gravitational theory
37F35 Conformal densities and Hausdorff dimension for holomorphic dynamical systems
Full Text: DOI

References:

[1] El Naschie, M. S., Dimensional symmetry breaking, information and fractal gravity in Cantorian space, BioSystems, 46, 41-46 (1998)
[2] Omohundro, S. M., Geometric perturbation theory in physics (1986), World Scientific: World Scientific Singapore · Zbl 0830.58036
[3] Grandy WT Jr., Foundation of statistical mechanics, vol. I: Equilibrium theory. Dordrecht: D. Reidel, 1987; Grandy WT Jr., Foundation of statistical mechanics, vol. I: Equilibrium theory. Dordrecht: D. Reidel, 1987 · Zbl 0721.60119
[4] Rueda, A.; Cavalleri, G., Zitterbewegung in stochastic electrodynamics and implications on a zero-point field acceleration mechanism, Nuovo Cimento, 6C, 3, 239-260 (1983)
[5] Peebles, P. J.E., Principles of physical cosmology (1993), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 1002.83527
[6] El Naschie, M. S., On the 26-dimensional Leech lattice and \(E^∞\), Chaos, Solitons & Fractals, 10, 11, 1813-1819 (1999) · Zbl 1035.81509
[7] DelaPeña, L.; Cetto, A. M., Quantum phenomena and the zeropoint radiation field, Found Phys, 24, 6, 917-925 (1994)
[8] Felegara, A., The relevance of the Algebraic approach to the quantum field theory in curved backgrounds, Fortschr Phys, 7, 1-2, 117-123 (1989)
[9] Semiz, I., Black hole as the ultimate energy source, Am J Phys, 63, 2, 151-156 (1995)
[10] Argyris, J.; Ciubotariu, C., Complexity in spacetime and gravitation I. From chaos to superchaos, Chaos, Solitons & Fractals, 9, 10, 1651-1701 (1998) · Zbl 0989.37023
[11] Leinaas, J., Hawking radiation, the Unruh effect and the polarisation of electrons, Europhys News, 2, 4, 78-80 (1991)
[12] Matsas, G. E.A., Do inertial electric charges radiate with respect to uniformly accelerated observers, Gen Rel Grav, 26, 11, 1165-1169 (1994)
[13] Leader, E.; Predazzi, E., An introduction to gauge theories and the new physics (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1139.81300
[14] Kibble T. Of particles, pencils, and unification. Preprint 1993, Department of Physics, Imperial College, London, UK; Kibble T. Of particles, pencils, and unification. Preprint 1993, Department of Physics, Imperial College, London, UK
[15] Mahajan SM. Field, Particles and Universe. Lecture Notes, Spring College on Plasma Physics, 17 May - 11 June 1993, H4-SMR 692/29, Preprint ICTP, Trieste; Mahajan SM. Field, Particles and Universe. Lecture Notes, Spring College on Plasma Physics, 17 May - 11 June 1993, H4-SMR 692/29, Preprint ICTP, Trieste
[16] Hands S. Ripples at the heart of physics. Preprint 1993, Theory Division, CERN, Geneva, Switzerland; Hands S. Ripples at the heart of physics. Preprint 1993, Theory Division, CERN, Geneva, Switzerland
[17] Copeland, E. J., Cosmic strings. A particle physics solution to the large-scale structure of the Universe, CERN Courier, 31, 6, 17-19 (1991)
[18] Martin, J. L., General relativity: a guide to its consequences for gravity and cosmology (1988), Ellis Horwood Limited: Ellis Horwood Limited Chichester
[19] Chang, T., Maxwells equations in anisotropic space, Phys Lett, 70A, 1, 1-2 (1979)
[20] Piran T. On fravitational repulsion. Gen Rel Grav 1997;29:1363-70 (e-print http://xxx.lanl.gov/abs/gr-qc/9706049; Piran T. On fravitational repulsion. Gen Rel Grav 1997;29:1363-70 (e-print http://xxx.lanl.gov/abs/gr-qc/9706049 · Zbl 0892.53045
[21] Hagai, El-Ad, Piran T. Voids in the large-scale structure. Astrophys J 1997; 491: 421-39 (e-print archive, http://xxx.lanl.gov/abs/astro-ph/9702135; Hagai, El-Ad, Piran T. Voids in the large-scale structure. Astrophys J 1997; 491: 421-39 (e-print archive, http://xxx.lanl.gov/abs/astro-ph/9702135
[22] Piran T, Lecar M, Goldwirth DS, NicolacidaCosta L, Blumenthal GR. Limits on the primordial fluctuation spectrum void sizes and CMBR anisotropy, e-print archive http://xxx.lanl.gov/abs/astro-ph/9305019; Piran T, Lecar M, Goldwirth DS, NicolacidaCosta L, Blumenthal GR. Limits on the primordial fluctuation spectrum void sizes and CMBR anisotropy, e-print archive http://xxx.lanl.gov/abs/astro-ph/9305019
[23] Rosen, G., Black holes associated with galaxies, Int J Theor Phys, 30, 11, 1517-1520 (1991)
[24] Vilenkin A. Cosmic strings and other topological defects, In: Humitaka S, Takeo I, editors. Quantum gravity and cosmology. Singapore: World Scientific, 1985: 269-300; Vilenkin A. Cosmic strings and other topological defects, In: Humitaka S, Takeo I, editors. Quantum gravity and cosmology. Singapore: World Scientific, 1985: 269-300
[25] Witten, E., Superconducting strings, Nucl Phys B, 249, 557-569 (1985)
[26] Linet, B., Electro-gravitational conversion in the spacetime of an infinite straight superconducting cosmic string, Phys Lett, 146A, 4, 159-161 (1990)
[27] Carter B, Peter P, Gangui A, Avoidance of collapse by circular current-carrying cosmic string loops. Phys Rev D 1996;54:4647-62 (e-print archive, http://xxx.lanl.gov/abs/hep-ph/9609401; Carter B, Peter P, Gangui A, Avoidance of collapse by circular current-carrying cosmic string loops. Phys Rev D 1996;54:4647-62 (e-print archive, http://xxx.lanl.gov/abs/hep-ph/9609401
[28] Brandenberger R, Carter B, Davis A-C, Trodden M. Cosmic vortons and particle physics constraints. Phys Rev D 1997;55:6059-71 (e-print archive, http://xxx.lanl.gov/abs/hep-ph/9605382; Brandenberger R, Carter B, Davis A-C, Trodden M. Cosmic vortons and particle physics constraints. Phys Rev D 1997;55:6059-71 (e-print archive, http://xxx.lanl.gov/abs/hep-ph/9605382
[29] Martínez, V. J., Is the universe fractal?, Science, 284, 445-446 (1999)
[30] Peebles, P. J.E., The fractal galaxy distribution, Physica D, 38, 273-278 (1989)
[31] Luo, X.; Schramm, D. N., Fractals and cosmological large-scale structure, Science, 256, 513-515 (1992)
[32] El Naschie, M. S., Time symmetry breaking, duality and Cantorian space-time, Chaos, Solitons & Fractals, 7, 4, 499-518 (1996) · Zbl 1080.81514
[33] Argyris, J.; Ciubotariu, C.; Weingaertner, W. E., Progress in physical concepts of string and superstring theory - Thirty years of string theory, Chaos, Solitons & Fractals, 10, 2-3, 225-256 (1999) · Zbl 0997.81099
[34] DerSarkissian, M., Possible evidence for gravitational Bohr orbits in double galaxies, Lettere al Nuovo Cimento, 44, 8, 629-636 (1985)
[35] Isham C. Quantum gravity. In: Davies P, editor. The new physics, Cambridge: Cambridge University Press, 1992; Isham C. Quantum gravity. In: Davies P, editor. The new physics, Cambridge: Cambridge University Press, 1992
[36] Ball, R. C.; Witten, T. A., Causality bound on the density of aggregates, Phys Rev A, 29, 5, 2966-2967 (1984)
[37] Ord, G. N., Fractal space-time and the statistical mechanics of random walks, Chaos, Solitons & Fractals, 7, 6, 821-843 (1996) · Zbl 1080.82542
[38] Mandelbrot, B. B., The fractal geometry of nature (1983), Freeman: Freeman New York · Zbl 0504.28001
[39] Kolb, E.; Turner, M. S., The early universe (1989), Addison-Wesley: Addison-Wesley San Francisco
[40] Argyris J, Rössler OE. Distance-proportional redshift in \(1+ε\); Argyris J, Rössler OE. Distance-proportional redshift in \(1+ε\)
[41] DeSabbata, V.; Sivaram, C., Fifth force as a manifestation of torsion, Int J Theor Phys, 29, 1, 1-6 (1990) · Zbl 0694.53064
[42] Corinaldesi, E.; Strocchi, F., Relativistic wave mechanics (1963), North-Holland: North-Holland Amsterdam · Zbl 0114.20203
[43] Nelson, E., Derivation of the Schrödinger equation from Newtonian mechanics, Phys Rev, 150, 1079-1085 (1966)
[44] Reuter M. Gravitational anyonisation. Preprint DESY 91-007, ITP-UH 1/91, Institute of Theoretical Physics, University of Hannover, February 1991; Reuter M. Gravitational anyonisation. Preprint DESY 91-007, ITP-UH 1/91, Institute of Theoretical Physics, University of Hannover, February 1991
[45] Gasperini, M., Broken Lorentz symmetry and the dimension of space-time, Phys Lett B, 180, 3, 221-224 (1986)
[46] El Naschie, M. S., Dimensional symmetry breaking and gravity in Cantorian space, Chaos, Solitons & Fractals, 8, 5, 753-759 (1997) · Zbl 0936.83042
[47] Long, D. R., Vacuum polarisation and non-Newtonian gravitation, Nuovo Cimento, 55B, 2, 252-256 (1980)
[48] El Naschie, M. S., A note on quantum gravity and Cantorian spacetime, Chaos Solitons & Fractals, 8, 1, 131-133 (1997) · Zbl 0945.83004
[49] Vilenkin, A., Cosmic strings and domain walls, Phys Rep, 121, 5, 263-315 (1985) · Zbl 0966.83541
[50] Sornborger A. The structure of cosmic string wakes. PhD Thesis, Department of Physics, Brown University, 1996; Sornborger A. The structure of cosmic string wakes. PhD Thesis, Department of Physics, Brown University, 1996
[51] Eddington, A. S., The Mathematical Theory of Relativity (1924), Cambridge University Press: Cambridge University Press Cambridge · JFM 50.0605.01
[52] Luminet, J.-P.; Starkman, G. D.; Weeks, J. R., Is space finite?, Scientific American, 280, 4, 68-75 (1999)
[53] Lachièze-Rey M, Luminet J-P. Cosmic topology. Phys Rep 1995;254(3):135-214 (xxx.lanl.gov/abs/gr-qc/9605010); Lachièze-Rey M, Luminet J-P. Cosmic topology. Phys Rep 1995;254(3):135-214 (xxx.lanl.gov/abs/gr-qc/9605010)
[54] Bak D, Kim SP, Kim SK, Soh K-S, Yee JH. Fractal diffraction grating, Preprint available at http://xxx.lanl.gov/abs/physics/9802007; Bak D, Kim SP, Kim SK, Soh K-S, Yee JH. Fractal diffraction grating, Preprint available at http://xxx.lanl.gov/abs/physics/9802007
[55] Nottale L. Scale relativity, fractal space-time and quantum mechanics. Chaos, Solitons & Fractals 1994;4:361-88. Reprinted in: El Naschie MS, Rössler OE, Prigogine I. Quantum mechanics, diffusion and chaotic fractals. Oxford: Elsevier, 1995: 51-78; Nottale L. Scale relativity, fractal space-time and quantum mechanics. Chaos, Solitons & Fractals 1994;4:361-88. Reprinted in: El Naschie MS, Rössler OE, Prigogine I. Quantum mechanics, diffusion and chaotic fractals. Oxford: Elsevier, 1995: 51-78
[56] Uozumi, J.; Peiponen, K.-E.; Savolainen, M.; Silvennoinen, R.; Asakura, T., Demonstration of diffraction by fractals, Am J Phys, 62, 3, 283-285 (1994)
[57] Nelson, E., Quantum fluctuations (1985), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0563.60001
[58] Ord, G. N., Fractal space-time: a geometric analogue of relativistic quantum mechanics, J Phys A: Math Gen, 16, 1869-1884 (1983)
[59] Collins, P. D.B.; Martin, A. D.; Squires, E. J., Particle physics and cosmology (1989), Wiley: Wiley New York
[60] Sterman, G., Quantum field theory (1993), Cambridge University Press: Cambridge University Press Cambridge
[61] Davies P. Superforce. London: Unwin Hyman Ltd, 1987; Davies P. Superforce. London: Unwin Hyman Ltd, 1987
[62] El Naschie, M. S., Stress, stability and chaos in structural engineering: an energy approach (1990), McGraw-Hill: McGraw-Hill London
[63] Nicolis G. Physics of far-from-equilibrium systems and self-organisation. In: Davies P, editor. The new physics, Cambridge: Cambridge University Press, 1992; Nicolis G. Physics of far-from-equilibrium systems and self-organisation. In: Davies P, editor. The new physics, Cambridge: Cambridge University Press, 1992
[64] Peat FD. Superstrings and the search for the theory of everything. contemporary Books, 1988; Peat FD. Superstrings and the search for the theory of everything. contemporary Books, 1988
[65] Rae IM. Quantum mechanics. 3rd ed. Bristol: Institute of Physics Publishing, 1993; Rae IM. Quantum mechanics. 3rd ed. Bristol: Institute of Physics Publishing, 1993
[66] Lawrie ID. A unified grand tour of theoretical physics. 3rd ed. Bristol: Institute of Physics Publishing, 1990; Lawrie ID. A unified grand tour of theoretical physics. 3rd ed. Bristol: Institute of Physics Publishing, 1990 · Zbl 0743.53044
[67] Argyris, J.; Ciubotariu, C., A metric for an Evans-Vigier field, Found Phys Lett, 11, 2, 141-163 (1998)
[68] Bohm, D.; Aharonov, Y., Significance of electromagnetic potentials in the quantum theory, Phys Rev, 115, 485-491 (1959) · Zbl 0099.43102
[69] Bohm, D.; Aharonov, Y., Further considerations on electromagnetic potentials in the quantum theory, Phys Rev, 123, 1511-1524 (1961) · Zbl 0104.22205
[70] Peshkin, M.; Tonomura, A., The Aharonov-Bohm effect (1989), Springer: Springer New York
[71] Holstein, B. R., Variations on the Aharonov-Bohm effect, Am J Phys, 59, 12, 1080-1085 (1991)
[72] Felsager, B., Geometry, Particles and fields (1981), Odense Uniersity Press: Odense Uniersity Press Odense · Zbl 0489.58001
[73] Feynman, R. P.; Hibbs, A. R., Quantum mechanics and path integrals (1965), McGraw-Hill: McGraw-Hill New York · Zbl 0176.54902
[74] Möllenstedt, G.; Bayh, W., The continuous variation of the phase of electron waves in field free space by means of the magnetic vector potential of a solenoid, Phys Blätt, 18, 299-310 (1962)
[75] Tonomura, A.; Matsuda, T.; Suzuki, R.; Fukuhara, A.; Osakabe, N.; Umezaki, H.; Endo, J.; Shinagawa, K.; Sugita, Y.; Fujiwara, H., Observation of Aharonov-Bohm effect by electron holography, Phys Rev Lett, 48, 1443-1446 (1982)
[76] Gamboa, J.; Rivelles, V. O., Quantum mechanics of relativistic particles in multiply connected spaces and the Aharonov-Bohm effect, J Phys A, 24, L659-L666 (1991)
[77] Aharonov, Y.; Casher, A., Topological quantum effects for neutral particles, Phys Rev Lett, 53, 319-321 (1984)
[78] Cimmins, A.; Cimmino, A.; Opat, G. I.; Klein, A. G.; Kaiser, H.; Werner, S. A.; Arif, M.; Clothier, R., Observation on the topological Aharonov-Casher phase shift by neutron interferometry, Phys Rev Lett, 63, 380-383 (1989)
[79] London F. Superfluids. vol. I. New York: Wiley, 1950; London F. Superfluids. vol. I. New York: Wiley, 1950 · Zbl 0041.58507
[80] Argyris, J.; Ciubotariu, C., A nonlinear chaotic gravitational-wave detector, Chaos, Solitons & Fractals, 10, 1, 51-76 (1999) · Zbl 0973.83506
[81] Semon, M. D., Experimental verification of an Aharonov-Bohm effect in rotating reference frames, Found Phys, 12, 49-57 (1982)
[82] Zimmerman, J. E.; Mercereau, J. E., Compton wavelength of superconducting electrons, Phys Rev Lett, 14, 887-888 (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.