×

A collocation solution for Burgers equation using quadratic B-spline finite elements. (English) Zbl 1037.65103

Summary: This author discusses solving one of the important equations in fluid dynamics; which is the one-dimensional Burgers equation. For that purpose, we use quadratic B-spline finite elements within a collocation method. It is shown that this method is capable of solving Burgers equation accurately for values of viscosity from small to large. Numerical results are obtained for test problems to show the behavior of the solutions of time dependent problems. Computed results are compared with other numerical results.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
Full Text: DOI

References:

[1] Bellman R., Quart. App. Math. 23 pp 55– (1965)
[2] DOI: 10.1016/0021-9991(72)90038-1 · Zbl 0236.76017 · doi:10.1016/0021-9991(72)90038-1
[3] DOI: 10.1016/0021-9991(73)90128-9 · Zbl 0267.65074 · doi:10.1016/0021-9991(73)90128-9
[4] DOI: 10.1016/0045-7930(75)90006-7 · Zbl 0347.76020 · doi:10.1016/0045-7930(75)90006-7
[5] DOI: 10.1016/0045-7825(77)90042-1 · Zbl 0364.65093 · doi:10.1016/0045-7825(77)90042-1
[6] Gurbatov S. N., Soviet Physics of Acoustics 23 pp 146– (1977)
[7] DOI: 10.1016/0021-9991(78)90031-1 · Zbl 0393.65038 · doi:10.1016/0021-9991(78)90031-1
[8] DOI: 10.1002/nme.1620120304 · Zbl 0388.76041 · doi:10.1002/nme.1620120304
[9] DOI: 10.1016/0045-7825(79)90044-6 · Zbl 0403.76072 · doi:10.1016/0045-7825(79)90044-6
[10] DOI: 10.1093/imanum/1.3.253 · Zbl 0469.65072 · doi:10.1093/imanum/1.3.253
[11] DOI: 10.1002/nme.1620180905 · Zbl 0485.65093 · doi:10.1002/nme.1620180905
[12] Varolgu E., I. J. Numer. Methods Eng. 16 pp 171– (1983)
[13] DOI: 10.1093/imanum/4.3.349 · Zbl 0555.65062 · doi:10.1093/imanum/4.3.349
[14] DOI: 10.1002/nme.1620200708 · Zbl 0546.65078 · doi:10.1002/nme.1620200708
[15] Nguyen H., Numerical Methods for Nonlinear Problems 3 pp 718– (1987)
[16] Caldwell J., Numerical Methods for Nonlinear Problems 3 pp 253– (1987)
[17] DOI: 10.1016/0021-9991(91)90039-N · Zbl 0746.65068 · doi:10.1016/0021-9991(91)90039-N
[18] Gardner L. R. T., J. Comp. Mech. pp 1555– (1991)
[19] DOI: 10.1002/num.1690080303 · Zbl 0753.76117 · doi:10.1002/num.1690080303
[20] DOI: 10.1016/0045-7825(92)90088-2 · Zbl 0762.65072 · doi:10.1016/0045-7825(92)90088-2
[21] DOI: 10.1002/(SICI)1098-2426(199609)12:5<579::AID-NUM3>3.0.CO;2-H · Zbl 0861.65074 · doi:10.1002/(SICI)1098-2426(199609)12:5<579::AID-NUM3>3.0.CO;2-H
[22] El Danf T. S. A., Efficient and accurate numerical methods for the Burgers and related partial differential equations (1998)
[23] Shamardan A. B., Korean J. Comput. & Appl. Math. 7 pp 215– (2000)
[24] Soliman, A. A. New numerical technique for Burgers equation based on similarity reductions. I. Conference on Applied Computational Fluid Dynamics, October 17-20,2000. Beijing, China. pp.559–566.
[25] Raslan K. R., Numerical methods for partial differential equations (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.