×

Towards a naturally small cosmological constant from branes in 6D supergravity. (English) Zbl 1036.83025

Summary: We investigate the possibility of self-tuning of the effective 4D cosmological constant in 6D supergravity, to see whether it could naturally be of order \(1/r^4\) when compactified on two dimensions having Kaluza-Klein masses of order \(1/r\). In the models we examine supersymmetry is broken by the presence of non-supersymmetric 3-branes (on one of which we live). If r were sub-millimeter in size, such a cosmological constant could describe the recently-discovered dark energy. A successful self-tuning mechanism would therefore predict a connection between the observed size of the cosmological constant, and potentially observable effects in sub-millimeter tests of gravity and at the Large Hadron Collider. We do find self-tuning inasmuch as 3-branes can quite generically remain classically flat regardless of the size of their tensions, due to an automatic cancellation with the curvature and dilaton of the transverse two dimensions. We argue that in some circumstances six-dimensional supersymmetry might help suppress quantum corrections to this cancellation down to the bulk supersymmetry-breaking scale, which is of order \(1/r\). We finally examine an explicit realization of the mechanism, in which 3-branes are inserted into an anomaly-free version of Salam-Sezgin gauged 6D supergravity compactified on a 2-sphere with nonzero magnetic flux. This realization is only partially successful due to a topological constraint which relates bulk couplings to the brane tension, although we give arguments why these relations may be stable against quantum corrections.

MSC:

83E50 Supergravity
81T60 Supersymmetric field theories in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
83E15 Kaluza-Klein and other higher-dimensional theories

References:

[1] Weinberg, S., Rev. Mod. Phys., 61, 1 (1989) · Zbl 1129.83361
[2] Bahcall, N.; Ostriker, J. P.; Perlmutter, S.; Steinhardt, P. J., Science, 284, 1481 (1999)
[3] Will, C. M. · Zbl 0962.83502
[4] Leblond, F.; Myers, R. C.; Winters, D. J., JHEP, 0107, 031 (2001)
[5] Chen, J.-W.; Luty, M. A.; Pontón, E.
[6] Navarro, I.
[7] Cline, J. M.; Descheneau, J.; Giovannini, M.; Vinet, J.
[8] Atwood, D.; Burgess, C. P.; Filotas, E.; Leblond, F.; London, D.; Maksymyk, I., Phys. Rev. D, 63, 025007 (2001)
[9] Antoniadis, I.; Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G. R., Phys. Lett. B, 436, 257 (1998)
[10] Acciarri, M., Phys. Lett. B, 470, 281 (1999)
[11] Cheung, K., Talk given at the 7th International Symposium on Particles, Strings and Cosmology (PASCOS 99), Tahoe City, CA, December 1999
[12] Cullen, S.; Perelstein, M.; Peskin, M. E.
[13] Hanhart, C.; Phillips, D. R.; Reddy, S.; Savage, M. J., Nucl. Phys. B, 595, 335 (2001)
[14] Kachru, S.; Schulz, M. B.; Silverstein, E., Phys. Rev. D, 62, 045021 (2000)
[15] Forste, S.; Lalak, Z.; Lavignac, S.; Nilles, H. P., JHEP, 0009, 034 (2000)
[16] Cline, J. M.; Firouzjahi, H., Phys. Rev. D, 65, 043501 (2002)
[17] Marcus, N.; Schwarz, J. H., Phys. Lett. B, 115, 111 (1982)
[18] Nishino, H.; Sezgin, E., Nucl. Phys. B, 278, 353 (1986)
[19] Salam, A.; Sezgin, E., Phys. Lett. B, 147, 47 (1984)
[20] Aghababaie, Y.; Burgess, C. P.; Parameswaran, S.; Quevedo, F., JHEP, 0303, 032 (2003)
[21] Alvarez-Gaumé, L.; Witten, E., Nucl. Phys. B, 234, 269 (1984)
[22] Green, M. B.; Schwarz, J. H., Phys. Lett. B, 149, 117 (1984)
[23] Randjbar-Daemi, S.; Salam, A.; Strathdee, J., Nucl. Phys. B, 214, 491 (1983)
[24] Randjbar-Daemi, S.; Salam, A.; Sezgin, E.; Strathdee, J., Phys. Lett. B, 151, 351 (1985)
[25] Erler, J., J. Math. Phys., 35, 1819 (1994) · Zbl 0803.58060
[26] Weinberg, S., Gravitation and Cosmology (1972), Wiley: Wiley New York
[27] Klein, M., Phys. Rev. D, 67, 045021 (2003)
[28] Scherk, J.; Schwarz, J. H., Phys. Lett. B, 82, 60 (1979)
[29] Dowker, J. S.
[30] Deser, S.; Jackiw, R., Ann. Phys., 153, 405 (1984)
[31] Wess, J.; Bagger, J., Supersymmetry and Supergravity (1992), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ
[32] Burgess, C. P.; Filotas, E.; Klein, M.; Quevedo, F.
[33] Seiberg, N., Phys. Lett. B, 390, 169 (1997)
[34] de Wit, B.; Louis, J.
[35] Sagnotti, A., Phys. Lett. B, 294, 196 (1992)
[36] Seiberg, N.; Witten, E., Nucl. Phys. B, 471, 121 (1996) · Zbl 1003.81535
[37] Arkani-Hamed, N.; Hall, L. J.; Kolda, C. F.; Murayama, H., Phys. Rev. Lett., 85, 4434 (2000)
[38] Witten, E.
[39] Aldazabal, G.; Uranga, A. M., JHEP, 9910, 024 (1999)
[40] Gibbons, G. W.; Pope, C. N.
[41] Arkani-Hamed, N.; Hall, L.; Smith, D.; Weiner, N., Phys. Rev. D, 62, 105002 (2000)
[42] Albrecht, A.; Burgess, C. P.; Ravndal, F.; Skordis, C., Phys. Rev. D, 65, 123505 (2002)
[43] Albrecht, A.; Burgess, C. P.; Ravndal, F.; Skordis, C., Phys. Rev. D, 65, 123507 (2002)
[44] Cvetic, M.; Lu, H.; Pope, C. N.; Sadrzadeh, A.; Tran, T. A., Nucl. Phys. B, 590, 233 (2000), and references therein · Zbl 1006.83072
[45] Andrianopoli, L.; D’Auria, R.; Ferrara, S.; Lledo, M. A., Nucl. Phys. B, 640, 63 (2000)
[46] Dabholkar, A.; Hull, C.
[47] Gibbons, G. W.; Güven, R.; Pope, C. N.
[48] Navarro, I.
[49] Kerimo, J.; Lü, H.
[50] Cvetic, M.; Gibbons, G. W.; Pope, C. N.
[51] Angelantonj, C.; Antoniadis, I.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.