×

The Bernstein constant and polynomial interpolation at the Chebyshev nodes. (English) Zbl 1035.41015

By giving explicit upper bounds, the author shows that the Bernstein constants \[ B_{\lambda,p} := \lim_{n\to\infty} n^{\lambda+1/p} \inf_{c_k} \Biggl\| | x| ^\lambda - \sum^n_{k=0} c_k x^k\Biggl\|_{L_p[-1,1]} \] are finite for all \(\lambda > 0\) and \(p\in (1/3,\infty)\). For \(p = 1\), the upper bounds turn out to be sharp. The main result follows from asymptotic relations for the error of approximation of \(| x| ^\lambda\) in \(L_p [-1,1]\) by polynomials of even degree given as the sum of the Lagrange interpolation polynomial to \(| x| ^\lambda\) at the Chebyshev nodes of 1st and 2nd kind and certain scalar multiples of the Chebyshev polynomials of 1st and 2nd kind (with scalars depending on \(n\) and \(\lambda\)). Such asymptotic relations are also given for the case \(p=\infty\), that is, for uniform approximation.

MSC:

41A44 Best constants in approximation theory
41A05 Interpolation in approximation theory
41A10 Approximation by polynomials

References:

[1] Bernstein, S., Sur la meilleure approximation de ∣\(x\)∣ par des polynômes des degrés donnés, Acta Math., 37, 1-57 (1913) · JFM 44.0475.01
[2] Bernstein, S. N., Extremal Properties of Polynomials and the Best Approximation of Continuous Functions of a Single Real Variable (1937), State United Scientific and Technical Publishing House: State United Scientific and Technical Publishing House Moscow
[3] Bernstein, S., Sur la meilleure approximation de ∣\(x\)∣\(^p\) par des polynômes de degrés trés élevés, Bull. Acad. Sci. USSR Sér. Math., 2, 181-190 (1938) · JFM 65.1198.01
[4] Bernstein, S. N., On the best approximation of continuous functions on the real axis by means of entire functions of given degree 5, Dokl. Akad. Nauk SSSR, 54, 479-482 (1946)
[5] Bernstein, S. N., New derivation and generalization of certain formulae of best approximation, Dokl. Akad. Nauk SSSR, 54, 667-668 (1946)
[6] Bernstein, S. N., On the best approximation of ∣\(x\)−\(c\)∣\(^p\), Collected Works, II, 273-280 (1954)
[7] Brutman, L.; Passow, E., On the divergence of Lagrange interpolation to ∣\(x\)∣, J. Approx. Theory, 81, 127-135 (1995) · Zbl 0822.41001
[8] Byrne, G.; Mills, T. M.; Smith, S. J., On Lagrange interpolation with equidistant nodes, Bull. Austral. Math. Soc., 42, 81-89 (1990) · Zbl 0726.41001
[9] Ganzburg, M. I., Limit theorems for the best polynomial approximations in the \(L_∞\) metric, Ukrainian Math. J., 43, 299-305 (1991) · Zbl 0753.41027
[10] Ganzburg, M. I., Limit relations in approximation theory and their applications, (Chui, C. K.; Schumaker, L. L., Approximation Theory VIII, Vol. 1: Approximation and Interpolation (1995), World Scientific: World Scientific Singapore), 223-232 · Zbl 1137.41350
[11] Ganzburg, M. I., Limit theorems and best constants of approximation theory, (Anastassiou, G. A., Handbook on Analytic-Computational Methods in Applied Mathematics (2000), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press London/Boca Raton), 507-569 · Zbl 0968.41012
[12] Ganzburg, M. I., New limit relations for polynomial approximations, (Kopotun, K.; Lyche, T.; Neamtu, M., Trends in Approximation Theory (2001), Vanderbilt University Press: Vanderbilt University Press Nashville) · Zbl 0726.41026
[13] Li, X.; Saff, E. B., Local convergence of Lagrange interpolation associated with equidistant nodes, J. Approx. Theory, 78, 213-225 (1994) · Zbl 0804.41002
[14] Nikolskii, S. M., On the best mean approximation by polynomials of the functions ∣\(x\)−\(c\)∣\(^s\), Izv. Akad. Nauk SSSR, 11, 139-180 (1947) · Zbl 0029.02801
[15] Raitsin, R. A.; Bernstein, S. N., Limit theorem for the best approximation in the mean and some of its applications, Izv. Vysch. Uchebn. Zaved. Mat., 12, 81-86 (1968)
[16] Raitsin, R. A., On the best approximation in the mean by polynomials and entire functions of finite degree of functions having an algebraic singularity, Izv. Vysch. Uchebn. Zaved. Mat., 13, 59-61 (1969)
[17] Revers, M., On the approximation of certain functions by interpolating polynomials, Bull. Austral. Math. Soc., 58, 505-512 (1998) · Zbl 0934.41001
[18] Revers, M., On Lagrange interpolation with equally spaced nodes, Bull. Austral. Math. Soc., 62, 357-368 (2000) · Zbl 1099.41004
[19] Revers, M., The divergence of Lagrange interpolation for ∣\(x\)∣\(^α\) at equidistant nodes, J. Approx. Theory, 103, 269-280 (2000) · Zbl 0954.41002
[20] Revers, M., Approximation constants in equidistant Lagrange interpolation, Period. Math. Hungar., 40, 167-175 (2000) · Zbl 0980.41005
[21] Revers, M., On Lagrange interpolatory parabolas to ∣\(x\)∣\(^α\) at equally spaced nodes, Arch. Math., 74, 385-391 (2000) · Zbl 0962.41001
[22] Szegö, G., Orthogonal Polynomials (1978), Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc: Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc Providence · JFM 65.0278.03
[23] Timan, A. F., Theory of Approximation of Functions of a Real Variable (1963), Pergamon: Pergamon New York · Zbl 0117.29001
[24] Varga, R. S.; Carpenter, A. J., On the Bernstein conjecture in approximation theory, Constr. Approx., 1, 333-348 (1985) · Zbl 0648.41013
[25] Walsh, J. L., Interpolation and Approximation by Rational Functions in the Complex Domain (1969), Amer. Math. Soc. Colloq. Publ. 20, Amer. Math. Soc: Amer. Math. Soc. Colloq. Publ. 20, Amer. Math. Soc Providence · Zbl 0013.05903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.