×

Nonvanishing of the central critical value of the third symmetric power \(L\)-functions. (English) Zbl 1034.11033

Let \(\pi\) be an irreducible cuspidal automorphic representation of \(GL_2(\mathbb A)\) where \(\mathbb A\) is the ring of adeles of a number field \(F\). In this paper the authors study the behaviour of the \(L\)-function \(L(s,\pi,\text{Sym}^3)\) at the central point \(s = \frac 12\) of the critical strip. H. Kim and F. Shahidi [Ann. Math. (2) 150, 645–662 (2002; Zbl 0957.11026)] have shown that when \(\pi\) is not monomial then this \(L\)-function is holomorphic in the entire plane except for a simple pole at \(s=1\). On the other hand, D. Bump, D. Ginzburg and J. Hoffstein [Invent. Math. 125, 413–449 (1996; Zbl 0871.11038)] have shown that the \(L\)-function has a representation as a Rankin-Selberg-Shimura integral.
In this paper the authors make use of a split group of type \(G_2\) over \(F\) when \(F\) contains the third roots of unity. The group \(G_2\) is used first because of Langlands’ representation of \(L(s,\pi,\text{Sym}^3)\) and secondly because the cubic metaplectic cover of \(G_2\) splits over a certain copy of \(GL_2\). Using this the authors can show that \(L(\frac 12,\pi,\text{Sym}^3)=0\) precisely when a certain “period”, an integral involving an automorpic form of \(\pi\) and two exceptional theta functions vanishes.

MSC:

11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E46 Semisimple Lie groups and their representations
11F55 Other groups and their modular and automorphic forms (several variables)
Full Text: DOI

References:

[1] Ar, Duke Math. J. 45 pp 911– (1978)
[2] [BG] Bump, D. and Ginzburg, D.: Symmetric square L-functions on GL?r?. Ann. of Math. (2) 136 (1992), 137-205 · Zbl 0753.11021
[3] Bump D., Invent. Math. 125 pp 413– (1996)
[4] Deligne P., Part 2 pp 313–
[5] [GJ] Gelbart, S. and Jacquet, H.: A relation between automorphic representations of GL?2? and GL?3?. Ann. Sci. Ecole Norm. Sup. (4) 11 (1978), 471-542 · Zbl 0406.10022
[6] Ginzburg D., Israel J. Math. 92 pp 157– (1995)
[7] Ginzburg D., Amer. J. Math. 119 pp 251– (1997)
[8] [GRS1] Ginzburg, D., Rallis, S. and Soudry, D.: On explicit lifts of cusp forms from GLmto classical groups. Preprint 1998
[9] [GJng] Ginzburg, D. and Jiang, D.: A Siegel-Weil identity for G2and poles of L-functions. Preprint 1999
[10] [Gr] Gross, B.: L-functions at the central critical point. Motives (Seattle, WA, 1991), 527-535; Proc. Sympos. Pure Math. 55, Part 1. Amer. Math. Soc. Providence.RI1994 · Zbl 0807.14015
[11] Gross B., Canad. J. Math. 44 pp 974– (1992)
[12] [H] Harris, M.: Hodge-de Rham structures and periods of automorphic forms. Motives (Seattle, WA, 1991), 573-624; Proc. Sympos. Pure Math. 55, Part 2. Amer. Math. Soc. Providence.RI1994 · Zbl 0824.14015
[13] [HK] Harris, M. and Kudla, S.: The central critical value of a triple product L-function. Ann. of Math. (2) 133 (1991), 605-672 · Zbl 0731.11031
[14] Jacquet H., J. Reine Angew. Math. 423 pp 175– (1992)
[15] Jng, J. Reine Angew. Math. 497 pp 17– (1998)
[16] Jng, Internat. Math. Res. Notices 1998 (2) pp 73–
[17] [JMR] Jiang, D., Mao, Z. and Rallis, S.: Relative Kuznietsov trace formulas on G2. Preprint 1999
[18] [KP] Kazhdan, D. and Patterson, S.: Metaplectic forms. IHES. 59 (1984), 35-142 · Zbl 0559.10026
[19] [KS] Kim, H. and Shahidi, F.: Symmetric cube L-functions for GL2are entire. Preprint 1998
[20] [KR] Kudla, S. and Rallis, S.: A regularized Siegel-Weil formula: the rst term identity. Ann. of Math. (2) 140 (1994), 1-80 · Zbl 0818.11024
[21] [La] Langlands, R.: On the functional equation satis ed by Eisenstein series.Lecture Notes in Math.544, Springer-Verlag, 1976
[22] Ma, Ann. Sci. Ecole Norm. Sup. 4 pp 1– (1969)
[23] [MW] Moeglin, C. and Waldspurger, J.L.: Spectral Decomposition and Eisenstein Series.Cambridge Tracts in Math.113, 1995 · Zbl 0846.11032
[24] Patterson S., Math. Ann. 283 pp 551– (1989)
[25] [Sh] Shahidi, F.: Symmetric power L-functions for GL?2?. Elliptic curves and related topics, 159-182. CRM Proc. Lecture Notes 4. Amer. Math. Soc. Providence.RI1994 · Zbl 0833.11016
[26] Sh, Compositio Math. 70 pp 245– (1989)
[27] [Shm] Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. London Math. Soc. (3) 31 (1975), 79-98 · Zbl 0311.10029
[28] Sv, J. Reine Angew. Math. 434 pp 115– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.