×

Clustering of critical points in Lefschetz fibrations and the symplectic Szpiro inequality. (English) Zbl 1033.53076

This paper proves a Szpiro type inequality for semistable symplectic Lefschetz fibrations of arbitrary base and fiber genus (a Lefschetz fibration is semistable if every fiber is a semistable complex curve). In the case of pencils (when the base curve has genus \(0\)), the result is that the number of critical points is bounded above by \(6h(D-1)\), where \(h\) is the genus of a smooth fiber and \(D\) is the number of singular fibers.
This result means that there are global obstructions to the clustering of critical points in a fiber. These obstructions give lower bounds for the commutator lengths of Dehn twists (more specifically, let \(t\) be a Dehn twist in a surface of genus \(h\) and write \(t^{k}\) as a product of \(g\) commutators in the mapping class group, then one has a lower bound for such \(g\)). The result generalizes [H. Endo and D. Kotschick, Invent. Math. 144, 169–175 (2001; Zbl 0987.57004)].
The authors also prove that the number of non-separating vanishing cycles in a Lefschetz pencil of genus \(h\) is not less than \((8h-3)/5\), generalising results of [T.-J. Li, Int. Math. Res. Notices 2000, 941–954 (2000; Zbl 0961.57022)] and [A. Stipsicz, Topology Appl. 117, 9–21 (2002; Zbl 1007.53059)].

MSC:

53D35 Global theory of symplectic and contact manifolds
57R17 Symplectic and contact topology in high or arbitrary dimension
14H10 Families, moduli of curves (algebraic)
57R57 Applications of global analysis to structures on manifolds

References:

[1] J. Amorós, F. Bogomolov, L. Katzarkov, and T. Pantev, Symplectic Lefschetz fibrations with arbitrary fundamental groups, J. Differential Geom. 54 (2000), no. 3, 489 – 545. With an appendix by Ivan Smith. · Zbl 1031.57021
[2] Arnaud Beauville, Complex algebraic surfaces, London Mathematical Society Lecture Note Series, vol. 68, Cambridge University Press, Cambridge, 1983. Translated from the French by R. Barlow, N. I. Shepherd-Barron and M. Reid. · Zbl 0512.14020
[3] A. Beauville, The Szpiro inequality for higher genus fibrations, Preprint arXiv:math. AG/0109080. · Zbl 1058.14045
[4] F. Bogomolov, L. Katzarkov and T. Pantev, Hyperelliptic Szpiro inequality, Preprint arXiv:math.GT/0106212. · Zbl 1040.14015
[5] S. K. Donaldson and I. Smith, Lefschetz pencils and the canonical class for symplectic \(4\)-manifolds, Preprint arXiv:math.SG/0012067. · Zbl 1012.57040
[6] H. Endo and D. Kotschick, Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (2001), no. 1, 169 – 175. · Zbl 0987.57004 · doi:10.1007/s002220100128
[7] Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. · Zbl 0933.57020
[8] M. Korkmaz, Commutators in mapping class groups and bounded cohomology, Preprint arXiv:math.GT/0012162.
[9] D. Kotschick, Signatures, monopoles and mapping class groups, Math. Res. Lett. 5 (1998), no. 1-2, 227 – 234. · Zbl 0905.57010 · doi:10.4310/MRL.1998.v5.n2.a9
[10] Tian-Jun Li, Symplectic Parshin-Arakelov inequality, Internat. Math. Res. Notices 18 (2000), 941 – 954. · Zbl 0961.57022 · doi:10.1155/S1073792800000490
[11] Ai-Ko Liu, Some new applications of general wall crossing formula, Gompf’s conjecture and its applications, Math. Res. Lett. 3 (1996), no. 5, 569 – 585. · Zbl 0872.57025 · doi:10.4310/MRL.1996.v3.n5.a1
[12] Ivan Smith, Geometric monodromy and the hyperbolic disc, Q. J. Math. 52 (2001), no. 2, 217 – 228. · Zbl 0981.57013 · doi:10.1093/qjmath/52.2.217
[13] I. Smith, Serre-Taubes duality for pseudoholomorphic curves, Preprint arXiv:math. SG/0106220. · Zbl 1030.57038
[14] András I. Stipsicz, On the number of vanishing cycles in Lefschetz fibrations, Math. Res. Lett. 6 (1999), no. 3-4, 449 – 456. · Zbl 0955.57026 · doi:10.4310/MRL.1999.v6.n4.a7
[15] András I. Stipsicz, Singular fibers in Lefschetz fibrations on manifolds with \?\(_{2}\)\(^{+}\)=1, Topology Appl. 117 (2002), no. 1, 9 – 21. · Zbl 1007.53059 · doi:10.1016/S0166-8641(00)00105-X
[16] L. Szpiro, Discriminant et conducteur des courbes elliptiques, Astérisque 183 (1990), 7 – 18 (French). Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988). · Zbl 0742.14026
[17] Clifford H. Taubes, \?\?\Rightarrow \?\?: from the Seiberg-Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996), no. 3, 845 – 918. · Zbl 0867.53025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.