×

Remarks on non linear type and Pisier’s inequality. (English) Zbl 1033.46013

For a function \(f\) on the discrete cube \({\mathbb D}_n = \{-1,1\}^n\) with values in a normed space \(X\), let \(F(\omega,\omega')= \sum_{i=1}^n \omega_i'\partial_i f(\omega)\) with \(\partial_i f(\omega) = (f(\omega)-f(S_i \omega))/2\), where \(S_i(\omega)\) has the same coordinates as \(\omega\) except for a sign change in the \(i\)th coordinate. G. Pisier proved in [ Probability and analysis, Lect. Notes Math. 1206, 167–241 (1986; Zbl 0606.60008)] that, for any \(1\leq p\leq\infty\), \[ \left( {\mathbb E} \| f - {\mathbb E} f \| ^p \right)^{1/p} \leq 2 e \log n \left( {\mathbb E} \| F\| ^p \right)^{1/p}, \] where \({\mathbb E}\) stands for the expectation with respect to the uniform probability on \({\mathbb D}_n\). For \(1\leq p <\infty\), the logarithmic factor is necessary in general as was shown by M. Talagrand [Geom. Funct. Anal. 3, 295–314 (1993; Zbl 0806.46035)], while R. Wagner [ Lect. Notes Math. 1745, 263–268 (2000; Zbl 0981.46021)] proved that it can be removed for \(p=\infty\).
The authors show that if \(X\) is a UMD Banach space, then the logarithmic factor can also be removed for all \(1\leq p<\infty\) at the expense of a constant depending on \(X\) but not on \(n\). They apply this result and their methods to study relations between different notions of linear and non-linear type. In particular, they show that Enflo type \(p\) and Rademacher type \(p\) are equivalent concepts for UMD spaces. Moreover, they prove that for UMD spaces both Rademacher type \(p\) and Enflo type \(p\) imply the non-linear type \(p\) of Bourgain, Milman and Wolfson.

MSC:

46B09 Probabilistic methods in Banach space theory
60B11 Probability theory on linear topological spaces
46B20 Geometry and structure of normed linear spaces

References:

[1] Ball K., Geom. Funct. Anal. 2 pp 137– (1992)
[2] Benyamini Y., Amer. Math. Soc. Coll. Publ. pp 48– (2000)
[3] Bourgain J., Trans. Amer. Math. Soc. 294 pp 1– (1986)
[4] Burkholder, D. L., Martingales and Singular Integrals in Banach Spaces, Handbook of the Geometry of Banach Spaces, volume 1, W. B. Johnson and J. Lindenstrauss, ed., Elsevier, Amsterdam (2001), 233-269. · Zbl 1029.46007
[5] Deza, M., Laurent, M., Geometry of cuts and metrics, Algorithms and Combinatorics 15, Springer-Verlag, Berlin 1997. · Zbl 0885.52001
[6] Enflo P., Math. Scand. 24 pp 195– (1970)
[7] Enflo P., Israel J. Math. 8 (1970) pp 230– (1970)
[8] Enflo, P., On infinite-dimensional topological groups, Seminaire sur la Geometrie des Espaces de Banach (1977-1978).Exp. No.10-11, 11 pp., Eacole Polytech., Palaiseau 1978. · Zbl 0395.22001
[9] James R., Israel J. Math. 30 pp 1– (1978)
[10] Matousek J., Israel J. Math. 102 pp 189– (1997)
[11] Maurey, B., Systeme de Haar, Seminaire Maurey-Schwartz, 1974-1975, Eacole Polytech., Paris 1975.
[12] Milman, V. D., Schechtman, G., Asymptotic theory of finite-dimensional normed spaces. With an appendix by M. Gromov, Lect. Notes Math. 1200, Springer-Verlag, Berlin 1986. · Zbl 0606.46013
[13] Pisier, G., Sur les espaces qui ne contiennent pas de l 1n uniformement, Seminaire Maurey-Schwartz (1973- 1974), Espaces Lp, applications radonifiantes et geometrie des espaces de Banach.Exp. No.7, 19 pp. (errata, p. E.1) Centre de Math., Eacole Polytech., Paris 1974.
[14] Pisier, G., Un exemple concernant la super-reflexivite, Seminaire Maurey-Schwartz (1974-1975), Eacole Polytech., Paris 1975.
[15] Pisier, G., Holomorphic semigroups and the geometry of Banach spaces, Ann. Math. (2) 115 (1982), no. 2, 375-392. · Zbl 0487.46008
[16] Pisier G., Springer Lect. Notes Math. 1206 pp 167– (1986)
[17] Talagrand M., Geom. Funct. Anal. 3 pp 3– (1993)
[18] Wagner R., Springer Lect. Notes Math. 1745 pp 263– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.