×

Higher algebraic \(K\)-theory for actions of diagonalizable groups. (English) Zbl 1032.19001

Invent. Math. 153, No. 1, 1-44 (2003); erratum ibid. 161, No. 1, 219-224 (2005).
This paper gives a decomposition theorem for the higher algebraic \(K\)-theory, \(K_* (X,G)\), of a separated noetherian regular algebraic space, \(X\), over a scheme, \(S\), acted on by a diagonalizable group scheme, \(G\), of finite type over \(S\). In an earlier paper [G. Vezzosi and A. Vistoli, Duke Math. J. 113, 1-55 (2002; Zbl 1012.19002)] the authors showed that if \(G\) acts with finite stabilizers then \(K_* (X,G)\) can be expressed as a product after inverting some primes. A similar result holds if the stabilizers are of constant dimension. The present paper considers the general case, in which the product decomposition must be replaced by a fibred product. The main theorem is that if \(X_s\) denotes the locus of \(X\) where the stabilizer is of dimension \(s\), \(N_s\) denotes the normal bundle of \(X_s\) in \(X\) and \(N_{s, s-1}\) the subspace where the stabilizer has dimension \(s-1\) then the restriction homomorphisms \(K_*(X,G) \to K_* (X_s, G)\) induce an isomorphism \[ K_*(X,G) \simeq K_* (X_n, G) \times_{K_* (N_{n,n-1}, G)} K_* (X_{n-1}, G) \times _{K_* (N_{n-1, n-2}, G)}\times\ldots\times_{K_* (N_{1,0},G)} K_* (X_0, G) \] where \(n\) is the dimension of \(G\). Using this the authors prove a version of Brion’s theorem 3.4 [M. Brion, Transform. Groups 2, 225-267 (1997; Zbl 0916.14003)] for algebraic \(K\)-theory. They also analyze the case in which \(X\) is a smooth toric variety.

MSC:

19E08 \(K\)-theory of schemes
14L30 Group actions on varieties or schemes (quotients)

References:

[1] Atiyah, M.F.: Elliptic operators and compact groups. Lect. Notes Math. 401. Berlin, New York: Springer 1974 · Zbl 0297.58009
[2] Barthel, No article title, Tohoku Math. J., II. Ser., 54, 1 (2002)
[3] Białynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. (2) 98, 480-497 (1973) · Zbl 0275.14007
[4] Bifet, No article title, Adv. Math., 82, 1 (1990) · Zbl 0743.14018
[5] Bredon, No article title, Duke Math. J., 41, 843 (1974) · Zbl 0294.57024
[6] Brion, No article title, Transform. Groups, 2, 225 (1997) · Zbl 0916.14003
[7] Brion, M.: Equivariant cohomology and equivariant intersection theory. In: Representation theories and algebraic geometry, pp. 1-37. Dordrecht: Kluwer Academic Publishers 1998 · Zbl 0946.14008
[8] Chang, T., Skjelbred, T.: The topological Shur lemma and related results. Ann. Math. (2) 100, 307-321 (1974) · Zbl 0249.57023
[9] Danilov, No article title, Russ. Math. Surv., 33, 97 (1978) · Zbl 0425.14013
[10] Demazure, No article title, Lect. Notes Math., 151, 152
[11] Edidin, No article title, Invent. Math., 131, 595 (1998) · Zbl 0940.14003 · doi:10.1007/s002220050214
[12] Eilenberg, No article title, Topology, 1, 1 (1962) · doi:10.1016/0040-9383(62)90020-4
[13] Fulton, W.: Intersection Theory. Springer 1993 · Zbl 0541.14005
[14] Fulton, W.: Introduction to toric varieties. Princeton: Princeton University Press 1993 · Zbl 0813.14039
[15] Goresky, No article title, Invent. Math., 131, 25 (1998) · Zbl 0897.22009 · doi:10.1007/s002220050197
[16] Grothendieck, No article title, Étude locale des schémas et des morphismes de schémas. Publ. Math., Inst. Hautes Étud. Sci., 28, 1 (1966) · Zbl 0144.19904
[17] Hsiang, W.Y.: Cohomology theory of Topological Transformation Groups. Springer 1975 · Zbl 0429.57011
[18] Kirwan, F.: Cohomology of quotients in symplectic and algebraic geometry. Math. Notes 31. Princeton: Princeton University Press 1984 · Zbl 0553.14020
[19] Klyachko, No article title, Sel. Math. Sov., 3, 41
[20] Laumon, G., Moret-Bailly, L.: Champs Algébriques. Springer 2000 · Zbl 0945.14005
[21] Merkurjev, No article title, Algebra Anal., 9, 175 (1997)
[22] Rosu, No article title, Math. Z., 243, 423 (2003) · Zbl 1019.19003
[23] Sumihiro, No article title, J. Math. Kyoto Univ., 15, 573 (1975) · Zbl 0331.14008
[24] Thomason, No article title, Duke Math. J., 68, 447 (1986)
[25] Thomason, No article title, Invent. Math., 85, 515 (1986) · Zbl 0653.14005
[26] Thomason, R.W.: Algebraic K-theory of group scheme actions. In: Algebraic Topology and Algebraic K-theory, Ann. Math. Stud. 113. Princeton: Princeton University Press 1987 · Zbl 0701.19002
[27] Thomason, No article title, Duke Math. J., 68, 447 (1992) · Zbl 0813.19002
[28] Thomason, No article title, Invent. Math., 112, 195 (1993) · Zbl 0816.19004
[29] Thomason, R.W., Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories. Grothendieck Festschrift vol. III, 247-435. Basel: Birkhäuser 1990 · Zbl 0731.14001
[30] Toen, B.: Notes on G-theory of Deligne-Mumford stacks. Preprint math.AG/9912172 · Zbl 1034.14008
[31] Vezzosi, No article title, Duke Math. J., 113, 1 (2002) · Zbl 1012.19002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.