×

Kaplan-Meier estimator under association. (English) Zbl 1030.62521

This work studies the Kaplan-Meier estimator and the estimation of the hazard function in a model with censored failure times. The true survival times \(T_1,\dots T_n\), with common marginal \(F\), are not assumed mutually independent. They satisfy two different notions of weak dependence:
a) They are positively associated, i.e. \[ \text{cov}[G(X_i;1\leq i\leq n),H(X_j;1\leq j\leq n)]\geq 0\;\text{for} E[G^2(X_j;1 \leq j \leq n)]<\infty \]
\[ \text{and} E[H^2(X_j; 1 \leq j\leq n)]<\infty,\;G,H : R^n\rightarrow R \] and are coordinatewise nondecreasing; or b) negatively associated, i.e., \[ \text{cov}[G(X_i; i\in A),H (X_j; j\in A^c)]\leq 0. \] \(A\) is a proper subset of \(\{1\dots, n\}\), \(G : R^{\# A}\rightarrow R\) and \(H : R^{\# A^c}\rightarrow R\) are functions with the same properties as above. The censored r.v.s \(\{Y_i\}_{i=1}^{n}\) are assumed i.i.d. and independent of the \(T_i\)’s. Defining \[ N_n(t)=\sum_{i=1}^{n}I(T_i\wedge Y_i)\leq t, I(T_i\wedge Y_i)=1)\;\text{and} Y_n(t)=\sum_{i=1}^{n}I(T_i\wedge Y_i)\geq t). \] The Kaplan-Meier estimator of \(F\) is always defined as \(1-\tilde F_n(t)=\prod_{s\leq t}(1-\frac{dN_n(s)}{Y_n(s)})\) where \(dN_n(s)=N_n(s)-N_n(s-)\). The hazard function \(\Delta(t)\) is given by \(\Delta(t)=\int_0^t\frac{dF(s)}{1-F(s-)}\) and its empirical estimator is \(\hat \Delta_n(t)=\int_0^t\frac{dN_n(s)}{Y_n(s)}\). Under some conditions the authors obtain several results that are generalizations of the i.i.d. case, namely: 1) \(sup_{0\leq t\leq \tau}|\hat \Delta_n(t)-\Delta(t)|\rightarrow 0 \) a.s. under the two types of dependence, 2) \(sup_{0\leq t\leq \tau_H}|\tilde F_n(t)-F(t)|\rightarrow 0 \) a.s. and \(sup_{0\leq t\leq Z_{n:n}}|\tilde F_n(t)-F(t)|\rightarrow 0 \) a.s. where \(Z_{n:n}=max_{i\leq n}(T_i\wedge Y_i)\), rates in these two convergences are also obtained. Finally in Theorem 1.5 they prove a weak convergence result, towards a Gaussian process, for the empirical process \(\tilde Z_n(t)=\sqrt n \frac{\tilde F_n(t)-F(t)}{1-F(t)}\). The work ends with a construction of a variance estimator for the variance of the Gaussian process limit.

MSC:

62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] Bagai, I.; Prakasa Rao, B. L.S., Estimation of the survival function for stationary associated processes, Statist. Probab. Lett., 12, 385-391 (1991) · Zbl 0749.62057
[2] Barlow, R. E.; Proschan, F., Statistical Theory of Reliability and Life Testing: Probability Models (1978), Holt, Rinehart and Winston: Holt, Rinehart and Winston New York
[3] Billingsley, P., Convergence of Probability Measures (1968), Wiley: Wiley New York · Zbl 0172.21201
[4] Birkel, T., Moment bounds for associated sequences, Ann. Probab., 16, 1184-1193 (1988) · Zbl 0647.60039
[5] Birkel, T., A note on the strong law of large numbers for positively dependent random variables, Statist. Probab. Lett., 7, 17-20 (1989) · Zbl 0661.60048
[6] Block, H. W.; Savits, T. H.; Shaked, M., Some concepts of negative dependence, Ann. Probab., 10, 765-772 (1982) · Zbl 0501.62037
[7] A. Bozorgnia, R. F. Patterson, R. L. Taylor, Limit theorems for negatively dependent random variables, 1993; A. Bozorgnia, R. F. Patterson, R. L. Taylor, Limit theorems for negatively dependent random variables, 1993 · Zbl 1042.60503
[8] Breslow, N.; Crowley, J., A large sample study of the life table and product limit estimators under random censorship, Ann. Statist., 2, 437-453 (1974) · Zbl 0283.62023
[9] Brindley, E. C.; Thompson, W. A., Dependence and aging aspects of multivariate survival, J. Amer. Statist. Assoc., 67, 822-830 (1972) · Zbl 0254.60064
[10] Burton, R.; Dabrowski, A. R.; Dehling, H., An invariance principle for weakly associated random vectors, Stochastic Process. Appl., 23, 301-306 (1986) · Zbl 0611.60028
[11] Cai, Z. W.; Roussas, G. G., Weak convergence for smooth estimate of a distribution function under association, Technical Report (1995)
[12] Carlstein, E., The use of subseries values for estimating the variance of a general statistic from a stationary sequence, Ann. Statist., 14, 1171-1179 (1986) · Zbl 0602.62029
[13] Cox, D. R.; Oakes, D., Analysis of Survival Data (1984), Chapman and Hall: Chapman and Hall London
[14] Ebrahimi, N.; Ghosh, M., Multivariate negative dependence, Commun. Statist. Theory Meth., 10, 307-337 (1981) · Zbl 0506.62034
[15] Egeland, T., Mixing dependence and system reliability, Scand. J. Statist., 19, 173-183 (1992) · Zbl 0763.62049
[16] Easry, J. D.; Proschan, F.; Walkup, D. W., Association of random variables, with applications, Ann. Math. Statist., 38, 1466-1474 (1967) · Zbl 0183.21502
[17] Fortuin, C. M.; Kastelyn, P. W.; Ginibre, J., Correlation inequalities on some partially ordered sets, Commun. Math. Phys., 22, 89-103 (1971) · Zbl 0346.06011
[18] Gill, R. D., Censoring and Stochastic Integrals. Censoring and Stochastic Integrals, Mathematical Centre tracts (1980), Mathematisch Centrum: Mathematisch Centrum Amsterdam · Zbl 0456.62003
[19] Gill, R. D., Testing with replacement and the product limit estimator, Ann. Statist., 9, 853-860 (1981) · Zbl 0468.62039
[20] Gill, R. D., Large sample behavior of the product limit estimator on the whole line, Ann. Statist., 11, 49-56 (1983) · Zbl 0518.62039
[21] Harris, T. E., A lower bound for the critical probability in a certain percolation process, Proc. Camb. Phil. Soc., 56, 13-20 (1960) · Zbl 0122.36403
[22] Joag-Dev, K., Independence via uncorrelatedness under certain dependence structures, Ann. Probab., 11, 1037-1041 (1983) · Zbl 0542.62046
[23] Joag-Dev, K.; Proschan, F., Negative association of random variables, with applications, Ann. Statist., 11, 286-295 (1983) · Zbl 0508.62041
[24] Kaplan, E. L.; Meier, P., Nonparametric estimation from incomplete observations, J. Amer. Statist. Assoc., 53, 457-481 (1958) · Zbl 0089.14801
[25] Künsch, H. R., The jackknife and the bootstrap for general stationary observations, Ann. Statist., 17, 1217-1241 (1989) · Zbl 0684.62035
[26] Lehmann, E., Some concepts of dependence, Ann. Math. Statist., 37, 1137-1153 (1966) · Zbl 0146.40601
[27] Newman, C. M., Normal fluctuations and the FKG inequalities, Commun. Math. Phys., 74, 119-128 (1980) · Zbl 0429.60096
[28] Newman, C. M., Ising models and dependent percolation, Topics in Statistical Dependence. Topics in Statistical Dependence, IMS Lecture Notes-Monograph Series, 16 (1990), p. 395-401
[29] Peligrad, M.; Shao, Q., Estimation of variance of partial sums of an associated sequence of random variables, Stochastic Process. Appl., 56, 307-319 (1995) · Zbl 0817.62019
[30] Peterson, A. V., Expressing the Kaplan-Meier estimator as a function of empirical subsurvival functions, J. Amer. Statist. Assoc., 72, 854-858 (1977) · Zbl 0372.62077
[31] Roussas, G. G., Kernel estimates under association: Strong uniform consistency, Statist. Probab. Lett., 12, 393-403 (1991) · Zbl 0746.62045
[32] Roussas, G. G., Asymptotic normality of random fields of positively or negatively associated processes, J. Multivariate Anal., 50, 152-173 (1994) · Zbl 0806.60040
[33] Roussas, G. G., Exponential probability inequalities with some applications, (Ferguson, T. S.; Shapley, L. S.; Macqueen, J. B., Statistics, Probability and Game Theory: Papers in Honor of David Blackwell. Statistics, Probability and Game Theory: Papers in Honor of David Blackwell, IMS Lecture Notes-Monograph Series, 30 (1996)) · Zbl 0187.16001
[34] Shorack, G. R.; Wellner, J. A., Empirical Processes with Applications to Statistics (1986), Wiley: Wiley New York · Zbl 1170.62365
[35] Stute, W.; Wang, J. L., A strong law under random censorship, Ann. Statist., 21, 1591-1607 (1993) · Zbl 0785.60020
[36] Stute, W., Convergence of Kaplan-Meier estimator in weighted sup-norms, Statist. Probab. Lett., 20, 219-223 (1994) · Zbl 0798.62066
[37] Tucker, H., A Graduate Course in Probability (1967), Academic Press: Academic Press New York · Zbl 0159.45702
[38] Voelkel, J.; Crowley, J., Nonparametric inference for a class of semi-Markov process with censored observation, Ann. Statist., 12, 142-160 (1984) · Zbl 0552.62020
[39] Wang, J. G., A note on the uniform consistency of the Kaplan-Meier estimator, Ann. Statist., 15, 1313-1316 (1987) · Zbl 0631.62043
[40] Ying, Z.; Wei, L. J., The Kaplan-Meier estimate for dependent failure time observations, J. Multivariate Anal., 50, 17-29 (1994) · Zbl 0798.62048
[41] Yu, H., A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences, Probab. Theor. Relat. Fields, 95, 357-370 (1993) · Zbl 0792.60018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.