×

Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes. (English) Zbl 1030.62075

Summary: We consider the prediction problem of a continuous-time stochastic process on an entire time interval in terms of its recent past. The approach we adopt is based on the notion of autoregressive Hilbert processes that represent a generalization of the classical autoregressive processes to random variables with values in a Hilbert space. A careful analysis reveals, in particular, that this approach is related to the theory of function estimation in linear ill-posed inverse problems. In the deterministic literature, such problems are usually solved by suitable regularization techniques. We describe some recent approaches from the deterministic literature that can be adapted to obtain fast and feasible predictions. For large sample sizes, however, these approaches are not computationally efficient.
With this in mind, we propose three linear wavelet methods to efficiently address the aforementioned prediction problem. We present regularization techniques for the sample paths of the stochastic process and obtain consistency results of the resulting prediction estimators. We illustrate the performance of the proposed methods in finite sample situations by means of a real-life data example which concerns with the prediction of the entire annual cycle of climatological El Niño-Southern Oscillations time series 1 year ahead. We also compare the resulting predictions with those obtained by other methods available in the literature, in particular with a smoothing spline interpolation method and with a SARIMA model.

MSC:

62M20 Inference from stochastic processes and prediction
46N30 Applications of functional analysis in probability theory and statistics
65F22 Ill-posedness and regularization problems in numerical linear algebra
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
62P12 Applications of statistics to environmental and related topics
60B11 Probability theory on linear topological spaces

Software:

fda (R); reccv; WaveLab
Full Text: DOI

References:

[1] Abramovich, F.; Bailey, T. C.; Sapatinas, T., Wavelet analysis and its statistical applications, Statistician, 49, 1-29 (2000)
[2] Aguilera, A. M.; Ocaña, F. A.; Valderrama, M. J., An approximated principal component prediction model for continuous-time stochastic processes, Appl. Stochast. Models Data Anal., 13, 61-72 (1997) · Zbl 0885.62109
[3] Antoniadis, A., Smoothing noisy data with coiflets, Statist. Sinica, 4, 651-678 (1994) · Zbl 0824.62030
[4] Antoniadis, A., Smoothing noisy data with tapered coiflets series, Scand. J. Statist., 23, 313-330 (1996) · Zbl 0861.62028
[5] Antoniadis, A., Wavelets in statisticsa review, J. Ital. Statist. Soc., 6, 97-144 (1997), (with discussion) · Zbl 1454.62113
[6] Antoniadis, A.; Bigot, J.; Sapatinas, T., Wavelet estimators in nonparametric regressiona comparative simulation study, J. Statist. Software, 6, 6, 1-83 (2001)
[7] Antoniadis, A.; Fan, J., Regularization of wavelets approximations, J. Amer. Statist. Assoc., 96, 939-967 (2001), (with discussion) · Zbl 1072.62561
[8] Antoniadis, A.; Grégoire, G.; McKeague, I. W., Wavelet methods for curve estimation, J. Amer. Statist. Assoc., 89, 1340-1353 (1994) · Zbl 0815.62018
[9] Antoniadis, A.; Pham, D. T., Wavelet regression for random or irregular design, Comput. Statist. Data Anal., 28, 353-370 (1998) · Zbl 1042.62534
[10] A. Antoniadis, T. Sapatinas, Wavelet methods for continuous-time prediction using representations of autoregressive processes in Hilbert spaces, Rapport de Recherchie, RR-1042-S, Laboratoire IMAG-LMC, University Joseph Fourier, France, 2001.; A. Antoniadis, T. Sapatinas, Wavelet methods for continuous-time prediction using representations of autoregressive processes in Hilbert spaces, Rapport de Recherchie, RR-1042-S, Laboratoire IMAG-LMC, University Joseph Fourier, France, 2001. · Zbl 1030.62075
[11] Besse, P. C.; Cardot, H., Approximation spline de la prévision d’un processus fonctionnel autorégressif d’ordre 1, Canad. J. Statist., 24, 467-487 (1996) · Zbl 0879.62092
[12] Besse, P. C.; Cardot, H.; Stephenson, D. B., Autoregressive forecasting of some functional climatic variations, Scand. J. Statist., 27, 673-687 (2000) · Zbl 0962.62089
[13] Bosq, D., Modelization, nonparametric estimation and prediction for continuous time processes, (Roussas, G., Nonparametric Functional Estimation and Related Topics. Nonparametric Functional Estimation and Related Topics, Nato ASI Series C, Vol. 335 (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Dortrecht), 509-529 · Zbl 0737.62032
[14] Bosq, D., Linear Processes in Function Spaces, Lecture Notes in Statistics, Vol. 149 (2000), Springer: Springer New York · Zbl 0971.62023
[15] Box, G. E.; Jenkins, G. M., Time Series Analysis (1976), Holden Day: Holden Day San Francisco · Zbl 0363.62069
[16] J.B. Buckheit, S. Chen, D.L. Donoho, I.M. Johnstone, J. Scargle, About WaveLab, Technical Report, Department of Statistics, Stanford University, USA, 1995.; J.B. Buckheit, S. Chen, D.L. Donoho, I.M. Johnstone, J. Scargle, About WaveLab, Technical Report, Department of Statistics, Stanford University, USA, 1995.
[17] H. Cardot, Contibution à l’estimation et à la prévision statistique de données fonctionnelles, Ph.D. Thesis, University of Toulouse 3, France, 1997.; H. Cardot, Contibution à l’estimation et à la prévision statistique de données fonctionnelles, Ph.D. Thesis, University of Toulouse 3, France, 1997.
[18] Daubechies, I., Ten Lectures on Wavelets (1992), SIAM: SIAM Philadelphia · Zbl 0776.42018
[19] Delyon, B.; Juditsky, A., On minimax wavelet estimators, Appl. Comput. Harm. Anal., 3, 215-228 (1996) · Zbl 0865.62023
[20] Dicken, V.; Maass, P., Wavelet-Galerkin methods for ill-posed problems, J. Inverse Ill-Posed Probl., 4, 203-222 (1996) · Zbl 0867.65026
[21] Donoho, D. L., Nonlinear solutions of linear inverse problems by wavelet-vaguelette decompositions, Appl. Comput. Harm. Anal., 2, 101-126 (1995) · Zbl 0826.65117
[22] Donoho, D. L.; Johnstone, I. M., Minimax estimation via wavelet shrinkage, Ann. Statist., 26, 879-921 (1998) · Zbl 0935.62041
[23] Halmos, P. R., What does the spectral theorem say?, Amer. Math. Monthly, 70, 241-247 (1963) · Zbl 0132.35606
[24] Helmerg, G., Introduction to Spectral Theory in Hilbert Space, North-Holland Series in Applied Mathematics and Mechanics, Vol. 6 (1969), North-Holland: North-Holland Amsterdam · Zbl 0177.42401
[25] Johnstone, I. M.; Silverman, B. W., Wavelet threshold estimators for data with correlated noise, J. R. Statist. Soc. Ser. B, 59, 319-351 (1997) · Zbl 0886.62044
[26] Kato, T., Perturbation Theory for Linear Operators (1976), Springer-Verlag: Springer-Verlag Berlin · Zbl 0342.47009
[27] Latif, M.; Barnett, T.; Cane, M.; Flugel, M.; Graham, N.; Xu, J.; Zebiak, S., A review of ENSO prediction studies, Climate Dynamics, 9, 167-179 (1994)
[28] Maass, P.; Rieder, A., Wavelet-accelerated Tikhonov-Phillips regularization with applications, (Engl, H. W.; Louis, A. K.; Rundell, W., Inverse Problems in Medical Imaging and Nondestructive Testing (1997), Springer-Verlag: Springer-Verlag Wien), 134-159 · Zbl 0880.65028
[29] Mair, B. A.; Ruymgaart, F. H., Statistical inverse estimation in Hilbert scales, SIAM J. Appl. Math., 56, 1424-1444 (1996) · Zbl 0864.62020
[30] Mallat, S. G., A theory for multiresolution signal decompositionthe wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., 11, 674-693 (1989) · Zbl 0709.94650
[31] Mallat, S. G., A Wavelet Tour of Signal Processing (1999), Academic Press: Academic Press San Diego · Zbl 0998.94510
[32] A. Mas, Estimation d’opérateurs de corrélation de processus fonctionnels: lois limites, tests, déviations modérées, Ph.D. Thesis, University of Paris 6, France, 2000.; A. Mas, Estimation d’opérateurs de corrélation de processus fonctionnels: lois limites, tests, déviations modérées, Ph.D. Thesis, University of Paris 6, France, 2000.
[33] F. Merlevéde, Processus linéaires Hilbertiens: inversibilité, theorémes limites, Estimation et prévision, Ph.D. Thesis, University of Paris 6, France, 1996.; F. Merlevéde, Processus linéaires Hilbertiens: inversibilité, theorémes limites, Estimation et prévision, Ph.D. Thesis, University of Paris 6, France, 1996.
[34] Meyer, Y., Wavelets and Operators (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0776.42019
[35] T. Mourid, Contribution à la statistique des processus autorégressifs à temps continu, Ph.D. Thesis, University of Paris 6, France, 1995.; T. Mourid, Contribution à la statistique des processus autorégressifs à temps continu, Ph.D. Thesis, University of Paris 6, France, 1995.
[36] Philander, S., El Niño, La Niña and the Southern Oscillation (1990), Academic Press: Academic Press San Diego
[37] Plato, R.; Vainikko, G., On the regularization of projection methods for solving ill-posed problems, Numer. Math., 57, 63-79 (1990) · Zbl 0675.65053
[38] B. Pumo, Estimation et prévision de processus autorégressifs fonctionnels. Application aux processus á temps continu, Ph.D. Thesis, University of Paris 6, France, 1992.; B. Pumo, Estimation et prévision de processus autorégressifs fonctionnels. Application aux processus á temps continu, Ph.D. Thesis, University of Paris 6, France, 1992.
[39] Ramsay, J. O.; Silverman, B. W., Functional Data Analysis (1997), Springer-Verlag: Springer-Verlag New York · Zbl 0882.62002
[40] Ramsay, J. O.; Silverman, B. W., Applied Functional Data Analysis (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1011.62002
[41] Rieder, A., A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization, Numer. Math., 75, 501-522 (1997) · Zbl 0878.65039
[42] Smith, T. M.; Reynolds, R.; Livezey, R.; Stokes, D., Reconstruction of historical sea surface temperatures using empirical orthogonal functions, J. Climate, 9, 1403-1420 (1996)
[43] Vidakovic, B., Statistical Modeling by Wavelets (1999), John Wiley & Sons: John Wiley & Sons New York · Zbl 0924.62032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.