×

Partial immunization processes. (English) Zbl 1030.60092

A partial immunization process (PIP) on a graph \(G\) with set of vertices \(V\) is a continuous-time Markov process with state-space \(\{-1,0,1\}^V\). So each vertex can be in the states \(-1\) (never infected), \(1\) (infected) or \(0\) (previously infected, partially immunized). Each vertex \(v\) flips according to the following rules: \(-1\)-\(1\) at rate \(\lambda_n\cdot i\), \(0\)-\(1\) at rate \(\lambda_o\cdot i\), \(1\)-\(0\) at rate 1, where \(i\) is the number of infected neighbors of \(v\) in \(G\), \(\lambda_o\), \(\lambda_n\) are some fixed positive numbers. The PIP \(\eta_t^O\) starts from some origin vertex \(O\) (i.e. \(\eta_0^O(O)=1\), \(\eta_0^O(v)=-1\) for all \(v\not=0\)). It is said that \(\eta_t^O\) strongly survives if \(\text{Pr}\{\forall T \exists t>T \text{ with }\eta_t^O(O)=1\}>0\). The author describes assumptions on \((\lambda_o,\lambda_n)\) under which \(\eta^O_t\) survives for \(G={\mathbb{Z}}^d\) (regular lattice) and \(G={\mathbb{T}}_d\) (regular tree). E.g. on \({\mathbb{Z}}^d\), \(\eta^O_t\) survives strongly if \(\lambda_o>\lambda_c\) and \(\lambda_n>0\), where \(\lambda_c\) is a critical value of the contact process on \({\mathbb{Z}}^d\). (A contact process is PIP with \(\lambda_o=\lambda_n\).) If \(\lambda_o<\lambda_c\), then PIP does not survive.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] ATHREy A, K. B. and NEY, P. E. (1972). Branching Processes. Springer, Berlin. · Zbl 0259.60002
[2] BEZUIDENHOUT, C. and GRIMMETT, G. (1990). The critical contact process dies out. Ann. Probab. 18 1462-1482. · Zbl 0718.60109 · doi:10.1214/aop/1176990627
[3] BEZUIDENHOUT, C. and GRIMMETT, G. (1991). Exponential decay for subcritical and percolation processes. Ann. Probab. 19 984-1009. · Zbl 0743.60107 · doi:10.1214/aop/1176990332
[4] BOLLOBÁS, B. (1998). Modern Graph Theory. Springer, New York. · Zbl 0902.05016
[5] DURRETT, R. (1988). Lectures Notes on Particle Sy stems and Percolation. Wadsworth, Belmont, CA. · Zbl 0659.60129
[6] DURRETT, R. (1995). Ten Lectures on Particle Sy stems. Lecture Notes in Math. 1608. Springer, New York. · Zbl 0840.60088
[7] DURRETT, R. and SCHINAZI, R. (2000). Boundary modified contact processes. J. Theoret. Probab. 13 575-594. · Zbl 0995.60090 · doi:10.1023/A:1007881121529
[8] GRASSBERGER, P., CHATÉ, H. and ROUSSEAU, G. (1997). Spreading in media with long-time memory. Phy s. Rev. E 55 2488-2495.
[9] HARRIS, T. E. (1974). Contact interactions on a lattice. Ann. Probab. 2 969-988. · Zbl 0334.60052 · doi:10.1214/aop/1176996493
[10] HARRIS, T. E. (1978). Additive set-valued Markov processes and graphical methods. Ann. Probab. 6 355-378. · Zbl 0378.60106 · doi:10.1214/aop/1176995523
[11] KULASMAA, K. (1982). The spatial general epidemic and locally dependent random graphs. J. Appl. Probab. 19 745-758. JSTOR: · Zbl 0509.60094 · doi:10.2307/3213827
[12] LALLEY, S. (1999). Growth profile and invariant measures for the weakly supercritical contact process on a homogeneous tree. Ann. Probab. 27 206-225. · Zbl 0954.60090 · doi:10.1214/aop/1022677259
[13] LALLEY, S. and SELLKE, T. (1998). Limit set of a weakly supercritical contact process on a homogeneous tree. Ann. Probab. 26 644-657. · Zbl 0937.60093 · doi:10.1214/aop/1022855646
[14] LIGGETT, T. M. (1985). Interacting Particle Sy stems. Springer, New York.
[15] LIGGETT, T. M. (1996). Multiple transition points for the contact process on the binary tree. Ann. Probab. 24 1675-1710. · Zbl 0871.60087 · doi:10.1214/aop/1041903202
[16] LIGGETT, T. M. (1999). Stochastic Interacting Sy stems: Contact, Voter and Exclusion Processes. Springer, New York. · Zbl 0949.60006
[17] Ly ONS, R. (2000). Phase transitions on nonamenable graphs. J. Math. Phy s. 41 1099-1126. · Zbl 1034.82014 · doi:10.1063/1.533179
[18] PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20 2089-2116. · Zbl 0762.60098 · doi:10.1214/aop/1176989541
[19] SALZANO, M. and SCHONMANN, R. H. (1998). A new proof that for the contact process on homogeneous trees local survival implies complete convergence. Ann. Probab. 26 1251- 1258. · Zbl 0937.60094 · doi:10.1214/aop/1022855752
[20] SALZANO, M. and SCHONMANN, R. H. (1999). The second lowest extremal invariant measure of the contact process II. Ann. Probab. 27 845-875. · Zbl 0946.60088 · doi:10.1214/aop/1022677388
[21] SCHONMANN, R. H. (1998). The triangle condition for contact processes on homogeneous trees. J. Statist. Phy s. 90 1429-1440. · Zbl 0922.60087 · doi:10.1023/A:1023247932037
[22] STACEY, A. M. (1996). The existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 1711-1726. · Zbl 0878.60061 · doi:10.1214/aop/1041903203
[23] STACEY, A. M. (2001). The contact process on finite trees. Probab. Theory Related Fields 121 551-576. · Zbl 1081.60560 · doi:10.1007/s004400100149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.