×

Blow-up and global existence for a nonlocal degenerate parabolic system. (English) Zbl 1030.35096

This paper studies the global existence and nonexistence of nonnegative solutions of the nonlocal degenerate parabolic system \[ u_t= \Delta(u^m)+ a\|v\|^p_\alpha,\quad v_t= \Delta(v^n)+ b\|u\|^q_\beta,\quad (x,t)\in \Omega\times (0,T) \] with homogeneous Dirichlet boundary condition and for nonnegative bounded initial data, where \(\Omega\) is a bounded domain in \(\mathbb{R}^N\) with smooth boundary \(\partial\Omega\), \(m,n> 1\), \(\alpha,\beta\geq 1\), \(p,q,a,b> 0\) and \(\|\cdot\|_\alpha\) denotes \(L^\alpha(\Omega)\) norm. It is proved that if \(pq< mn\), every nonnegative solution is global, and whereas if \(pq> mn\), there exist both global and blow-up nonnegative solutions depending on the initial data. When \(pq= mn\), there exist both global and blow-up nonnegative solutions depending on the domains. The results are proved by comparison arguments.

MSC:

35K50 Systems of parabolic equations, boundary value problems (MSC2000)
35K55 Nonlinear parabolic equations
35B33 Critical exponents in context of PDEs
35K65 Degenerate parabolic equations
Full Text: DOI

References:

[1] Bebernes, J. W.; Bressan, A., Thermal behavior for a confined reactive gas, J. Differential Equations, 44, 118-133 (1982) · Zbl 0489.45013
[2] Pao, C. V., Blowing-up of solution for a nonlocal reaction-diffusion problem in combustion theory, J. Math. Anal. Appl., 166, 591-600 (1992) · Zbl 0762.35049
[3] Chadam, J. M.; Peirce, A.; Yin, H. M., The blowup property of solutions to some diffusion equations with localized nonlinear reactions, J. Math. Anal. Appl., 169, 313-328 (1992) · Zbl 0792.35095
[4] Deng, K.; Kwong, M. K.; Levine, H. A., The influence of nonlocal nonlinearities on the long time behavior of solutions of Burger’s equation, Quart. Appl. Math., 50, 173-200 (1992) · Zbl 0770.35061
[5] Galaktionov, V. A.; Levine, H. A., A general approach to critical Fujita exponents in nonlinear parabolic problems, Nonlinear Anal., 34, 1005-1027 (1998) · Zbl 1139.35317
[6] Souplet, Ph., Blow-up in nonlocal reaction-diffusion equations, SIAM J. Math. Anal., 29, 1301-1334 (1998) · Zbl 0909.35073
[7] Furter, J.; Grinfeld, M., Local vs. non-local interactions in population dynamics, J. Math. Biol., 27, 65-80 (1989) · Zbl 0714.92012
[8] Anderson, J. R.; Deng, K., Global existence for degenerate parabolic equations with a non-local forcing, Math. Methods Appl. Sci., 20, 1069-1087 (1997) · Zbl 0883.35066
[9] Deng, W. B.; Duan, Z. W.; Xie, C. H., The blow-up rate for a degenerate parabolic equation with a non-local source, J. Math. Anal. Appl., 264, 577-597 (2001) · Zbl 1019.35054
[10] Levine, H. A., The role of critical exponents in blowup theorems, SIAM Rev., 32, 262-288 (1990) · Zbl 0706.35008
[11] Deng, K.; Levine, H. A., The role of critical exponents in blow-up theorems: the sequel, J. Math. Anal. Appl., 243, 85-126 (2000) · Zbl 0942.35025
[12] Chen, H. W., Global existence and blow-up for a nonlinear reaction-diffusion system, J. Math. Anal. Appl., 212, 192-481 (1997) · Zbl 0884.35068
[13] Wang, M. X., Global existence and finite blowup for a reaction-diffusion system, Z. Angew. Math. Phys., 51, 160-167 (2000) · Zbl 0984.35088
[14] Rossi, J. D.; Wolanski, N., Blow-up versus global existence for a semilinear reaction-diffusion system in a bounded domain, Comm. Partial Differential Equations, 20, 1991-2004 (1995) · Zbl 0851.35064
[15] Y.X. Li, W.B. Deng, C.H. Xie, Global existence and nonexistence for degenerate parabolic systems, Proc. Amer. Math. Soc., in press; Y.X. Li, W.B. Deng, C.H. Xie, Global existence and nonexistence for degenerate parabolic systems, Proc. Amer. Math. Soc., in press · Zbl 1090.35094
[16] Qi, Y. W.; Levine, H. A., The critical exponent of degenerate parabolic system, Z. Angew. Math. Phys., 44, 249-265 (1993) · Zbl 0816.35068
[17] Escobedo, M.; Levine, H. A., Critical blow-up and global existence numbers for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal., 129, 47-100 (1995) · Zbl 0822.35068
[18] Escobedo, M.; Herrero, M. A., Boundedness and blow-up for a semiliner reaction-diffusion system, J. Differential Equations, 89, 176-202 (1991) · Zbl 0735.35013
[19] Escobedo, M.; Herrero, M. A., A semilinear parabolic system in a bounded domain, Ann. Mat. Pura Appl. (4), CLXV, 307-315 (1993) · Zbl 0806.35088
[20] Galaktionov, V. A.; Kurdyumov, S. P.; Samarskii, A. A., A parabolic system of quasi-linear equations I, Differential Equations, 19, 1558-1571 (1983) · Zbl 0556.35071
[21] Galaktionov, V. A.; Kurdyumov, S. P.; Samarskii, A. A., A parabolic system of quasi-linear equations II, Differential Equations, 21, 1049-1062 (1985) · Zbl 0599.35085
[22] Samarskii, A. A.; Galaktionov, V. A.; Kurdyumov, S. P.; Mikhailov, A. P., Blow-up in Quasilinear Parabolic Equations (1995), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 1020.35001
[23] Aronson, D. G.; Crandall, M. G.; Peletier, L. A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal., 6, 1001-1022 (1982) · Zbl 0518.35050
[24] Galaktionov, V. A., Boundary values problems for the nonlinear parabolic equation \(u_t= Δu^{σ+1}+u^{p\) · Zbl 0478.35058
[25] Levine, H. A.; Sacks, P. E., Some existence and nonexistence theorems for solutions of degenerate parabolic equations, J. Differential Equations, 52, 135-161 (1984) · Zbl 0487.34003
[26] Sacks, P. E., Global behavior for a class of nonlinear evolutionary equations, SIAM J. Math. Anal., 16, 233-250 (1985) · Zbl 0572.35062
[27] Andreucci, D.; DiBenedetto, E., A new approach to initial trace in nonlinear filtration, Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, 305-334 (1990) · Zbl 0723.35014
[28] DiBenedetto, E., Degenerate Parabolic Equations (1993), Springer: Springer New York · Zbl 0794.35090
[29] Anderson, J. R., Local existence and uniqueness of solutions of degenerate parabolic equations, Comm. Partial Differential Equations, 16, 105-143 (1991) · Zbl 0738.35033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.