×

Existence and estimates of solutions for singular nonlinear elliptic problems. (English) Zbl 1030.35064

The authors investigate existence results for the nonlinear elliptic problem \[ \Delta u+\varphi(x,u)=0, \quad x\in\Omega,\qquad fu|_{\partial\Omega}=0. \] Here, \(\Omega\subset\mathbb {R}^d\), \(d\geq 3\), is a (possibly unbounded) domain and \(\varphi:\Omega\times (0,\infty)\to (0,\infty)\) is assumed to be continuous and nonincreasing with respect to the second variable. They prove the existence and uniqueness of a positive solution \(u\in C(\overline{\Omega})\), and in the case when \(\varphi\in C^{\alpha}_{\text{loc}}(\Omega\times (0,\infty))\), they show the solution \(u\in C^{2+\alpha}_{\text{loc}}(\Omega)\cap C(\overline{\Omega})\). Finally, they establish some estimates on the solution, including the lower bound \(u(x)\geq c\theta(x)\), for all \(x\in\Omega\), where \(\theta(x)=\min\{1,G(x,x_0)\}\). Here, \(x_0\in\Omega\) is fixed, \(c\) is a positive constant, and \(G\) is the Green’s function.

MSC:

35J60 Nonlinear elliptic equations
Full Text: DOI

References:

[1] Aizenmann, M.; Simon, B., Brownian motion and Harnak inequality for Schrödinger operators, Comm. Pure Appl. Math., 35, 209-271 (1982) · Zbl 0459.60069
[2] Bliedtner, J.; Hansen, W., Potential Theory. An Analytic and Probabilistic Approach to Balayage (1986), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0706.31001
[3] Chen, Z. Q.; Song, R., Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312, 465-501 (1998) · Zbl 0918.60068
[4] Chung, K. L.; Zhao, Z., From Brownian Motion to Schrödinger’s Equation (1995), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0819.60068
[5] Dalmasso, R., Solutions d’équations elliptiques semi-linéaires singulières, Ann. Math. Pura. Appl., 153, 191-202 (1988) · Zbl 0692.35044
[6] Dautry, R.; Lions, J. L., L’opérateur de Laplace. L’opérateur de Laplace, Analyse mathématique et calcul numérique pour les sciences et les techniques, coll. CEA, 2 (1987), Masson: Masson Paris · Zbl 0708.35002
[7] Edelson, A. L., Entire solutions of singular elliptic equations, J. Math. Anal. Appl., 139, 523-532 (1989) · Zbl 0679.35003
[8] Lair, A. V.; Shaker, A. W., Entire solutions of singular semilinear elliptic problem, J. Math. Anal. Appl., 200, 498-505 (1996) · Zbl 0860.35030
[9] Lair, A. V.; Shaker, A. W., Classical and weak solutions of a singular semilinear elliptic problem, J. Math. Anal. Appl., 211, 371-385 (1997) · Zbl 0880.35043
[10] Lazer, A. C.; Mckenna, P. J., On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111, 721-730 (1991) · Zbl 0727.35057
[11] Mâagli, H.; Masmoudi, S., Sur les solutions d’un opérateur différentiel singulier semi-linéaire, Potential Anal., 10, 289-304 (1999) · Zbl 0935.34011
[12] Mokobodzki, G., Cônes de potentiels et noyaux subordonnés (1969), cours du C.I.M.E.: cours du C.I.M.E. Stresa · Zbl 0199.42803
[13] Port, S. C.; Stone, C. J., Brownian Motion and Classical Potential Theory (1978), Academic Press: Academic Press San Diego · Zbl 0184.21402
[14] Zhao, Z., Green function for Schrödinger operator and conditional Feynman-Kac gauge, J. Math. Anal. Appl., 116, 309-334 (1986) · Zbl 0608.35012
[15] Zhao, Z., On the existence of positive solutions of nonlinear elliptic equations. A probabilistic potential theory approach, Duke Math. J., 69, 247-258 (1993) · Zbl 0793.35032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.