×

Stationary two-dimensional magnetohydrodynamic flows with shocks: Characteristic analysis and grid convergence study. (English) Zbl 1029.76034

Summary: Five model flows of increasing complexity belonging to the class of stationary two-dimensional plane field-aligned magnetohydrodynamic (MHD) flows are presented which are well suited for the quantitative evaluation of MHD codes. The physical properties of these five flows are investigated using characteristics’ theory. Grid convergence criteria for flows belonging to this class are derived from characteristic theory, and grid convergence is demonstrated for numerical simulation of the five model flows with a standard high-resolution finite volume numerical MHD code on structured body-fitted grids. In addition, one model flow is presented which is not field-aligned, and it is discussed how grid convergence can be studied for this flow. By formal grid convergence studies of magnetic flux conservation and other flow quantities, it is investigated whether the Powell source term approach to controlling the \(\nabla\cdot{\mathbf B}\) constraint leads to correct results for the class of flows under consideration.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
76L05 Shock waves and blast waves in fluid mechanics
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

ZEUS
Full Text: DOI

References:

[1] Abeele, D. Vanden; Deconinck, H., Development of a Godunov-Type Solver for 2D ideal (1995)
[2] Edward Anderson, J., Magnetohydrodynamic Shock Waves (1963) · Zbl 0114.19204
[3] Balsara, D. S.; Spicer, D. S., A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations, J. Comput. Phys, 149, 270 (1999) · Zbl 0936.76051
[4] Barmin, A. A.; Kulikovskiy, A. G.; Pogorelov, N. V., Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics, J. Comput. Phys, 126, 77 (1996) · Zbl 0863.76039
[5] Timothy, J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, edited by, D. Kröner, M. Ohlberger, and C. Rohde, Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin, 1998, p, 195.; Timothy, J. Barth, Numerical methods for gasdynamic systems on unstructured meshes, in, An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, edited by, D. Kröner, M. Ohlberger, and C. Rohde, Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin, 1998, p, 195.
[6] Biskamp, D., Nonlinear Magnetohydrodynamics (1993)
[7] Brackbill, J. U.; Barnes, D. C., The effect of nonzero ∇·\(B\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys, 35, 426 (1980) · Zbl 0429.76079
[8] Brio, M.; Wu, C. C., An upwind differencing scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys, 75, 400 (1988) · Zbl 0637.76125
[9] Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves (1948) · Zbl 0041.11302
[10] Courant, R.; Hilbert, D., Methods of Mathematical Physics, 2 (1962) · Zbl 0729.00007
[11] A. Csik, H. Deconinck, and, S. Poedts, Monotone residual distribution schemes for the ideal 2D magnetohydrodynamic equations on unstructured grids, AIAA Paper 99-3325-CP, 1999.; A. Csik, H. Deconinck, and, S. Poedts, Monotone residual distribution schemes for the ideal 2D magnetohydrodynamic equations on unstructured grids, AIAA Paper 99-3325-CP, 1999.
[12] Dai, W.; Woodward, P. R., An approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys, 111, 354 (1994) · Zbl 0797.76052
[13] Dai, W.; Woodward, P. R., Extension of the piecewise parabolic method (PPM) to multidimensional ideal magnetohydrodynamics, J. Comput. Phys, 115, 485 (1994) · Zbl 0813.76058
[14] Dai, W.; Woodward, P. R., On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flows, Astrophys. J, 494, 317 (1998)
[15] DeVore, C. R., Flux-corrected transport techniques for multidimensional compressible magnetohydrodynamics, J. Comput. Phys, 92, 142 (1991) · Zbl 0716.76056
[16] Evans, C. R.; Hawley, J. F., Simulation of magnetohydrodynamic flows: A constrained transport method, Astrophys. J, 332, 659 (1988)
[17] Falle, S. A.E. G.; Komissarov, S. S.; Joarder, P., A multidimensional upwind scheme for magnetohydrodynamics, Mon. Not. R. Astron. Soc, 297, 265 (1998)
[18] S. K. Godunov, In, Nonlinear Hyperbolic Problems: Proceedings of an Advanced Research Workshop; S. K. Godunov, In, Nonlinear Hyperbolic Problems: Proceedings of an Advanced Research Workshop
[19] Goedbloed, J. P.; Lifshitz, A., Stationary symmetric magnetohydrodynamic flows, Phys. Plasmas, 4, 3544 (1997)
[20] Gombosi, T. I.; Powell, K. G.; De Zeeuw, D. L., Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results, J. Geophys. Res, 99, 21525 (1994)
[21] Gombosi, T. I.; De Zeeuw, D. L.; Haberli, R. L.; Powell, K. G., Three-dimensional multiscale MHD model of cometary plasma environments, J. Geophys. Res, 101, 15233 (1996)
[22] Grad, H., Reducible problems in magneto-fluid dynamic steady flows, Rev. Mod. Phys, 32, 830 (1960) · Zbl 0166.46403
[23] Hameiri, E., The equilibrium and stability of rotating plasmas, Phys. Fluids, 26, 230 (1983) · Zbl 0537.76121
[24] Jeffrey, A.; Taniuti, T., Non-linear Wave Propagation (1964) · Zbl 0117.21103
[25] Kato, Y.; Taniuti, T., Hydromagnetic plane steady flow in compressible ionized gases, Prog. Theor. Phys, 21, 606 (1959) · Zbl 0085.40403
[26] Keppens, R.; Goedbloed, J. P., Numerical simulations of stellar winds: Polytropic models, Astron. Astrophys, 343, 251 (1998)
[27] Landau, L. D.; Lifshitz, E. M., Electrodynamics of Continuous Media (1984) · Zbl 0122.45002
[28] Leveque, R. J., Numerical Methods for Conservation Laws (1992) · Zbl 0847.65053
[29] R. J. Leveque, Nonlinear conservation laws and finite volume methods for astrophysical fluid flow, in, Computational Methods for Astrophysical Fluid Flow, edited by, O. Steiner and A. Gautschy, Springer-Verlag, Berlin, 1998.; R. J. Leveque, Nonlinear conservation laws and finite volume methods for astrophysical fluid flow, in, Computational Methods for Astrophysical Fluid Flow, edited by, O. Steiner and A. Gautschy, Springer-Verlag, Berlin, 1998. · Zbl 0901.00013
[30] Lifshitz, A.; Goedbloed, J. P., Transonic magnetohydrodynamic flows, J. Plasma Physics, 58, 61 (1997)
[31] Linde, T. J., A Three-Dimensional Adaptive Multifluid MHD Model of the Heliosphere (1998)
[32] Linde, T. J.; Gombosi, T. I.; Roe, P. L.; Powell, K. G.; De Zeeuw, D. L., Heliosphere in the magnetized local interstellar medium: Results of a three-dimensional MHD simulation, J. Geophys. Res, 103, 1889 (1998)
[33] Manna, M., A Three Dimensional High Resolution Compressible Flow Solver (1992)
[34] Myong, R. S.; Roe, P. L., On Godunov-type schemes for magnetohydrodynamics. 1. A model system, J. Comput. Phys, 147, 545 (1998) · Zbl 0917.76053
[35] Petrinec, S. M.; Russell, C. T., Hydrodynamic and MHD equations across the bow shock and along the surfaces of planetary obstacles, Space Sci. Rev, 79, 757 (1997)
[36] Powell, K. G.; Roe, P. L.; Myong, R. S.; Gombosi, T. I.; Zeeuw, D. L.De, An Upwind Scheme for Magnetohydrodynamics (1995) · Zbl 0900.76344
[37] Powell, K. G.; Roe, P. L.; Linde, T. J.; Gombosi, T. I.; De Zeeuw, D. L., A solution-adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 (1999) · Zbl 0952.76045
[38] Quirk, James J., A contribution to the great Riemann solver debate, Int. J. Numer. Methods Fluids, 18, 555 (1994) · Zbl 0794.76061
[39] Ratkiewicz, R.; Barnes, A.; Molvik, G. A.; Spreiter, J. R.; Stahara, S. S.; Vinokur, M.; Venkateswaran, S., Effect of varying strength and orientation of local interstellar magnetic field on configuration of exterior heliosphere: 3D MHD simulations, Astron. Astrophys, 335, 363 (1998)
[40] Roe, P. L.; Balsara, D. S., Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math, 56, 57 (1996) · Zbl 0845.35092
[41] Ryu, D.; Jones, T. W., Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for one-dimensional flow, Astrophys. J, 442, 228 (1995)
[42] Ryu, D.; Jones, T. W.; Frank, A., Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow, Astrophys. J, 452, 785 (1995)
[43] Sakurai, T., Magnetohydrodynamic solar/stellar wind models, Comput. Phys. Rep, 12, 247 (1990)
[44] C. Schwab, hp-fem for fluid flow simulation, in, High Order Discretization Methods in Computational Fluid dynamics, edited by, H. Deconinck and T. J. Barth, von Karman Institute Lecture Series, 1998.; C. Schwab, hp-fem for fluid flow simulation, in, High Order Discretization Methods in Computational Fluid dynamics, edited by, H. Deconinck and T. J. Barth, von Karman Institute Lecture Series, 1998.
[45] De Sterck, H.; Deconinck, H.; Poedts, S.; Roose, D., A bow shock flow containing (almost) all types of (‘exotic’) MHD discontinuities, Proceedings of the Seventh International Conference on Hyperbolic Problems, 195 (1998) · Zbl 0937.76040
[46] De Sterck, H.; Low, B. C.; Poedts, S., Complex magnetohydrodynamic bow shock topology in field-aligned low-β flow around a perfectly conducting cylinder, Phys. Plasmas, 5, 4015 (1998)
[47] De Sterck, H.; Low, B. C.; Poedts, S., Characteristic analysis of a complex two-dimensional magnetohydrodynamic bow shock flow with steady compound shocks, Phys. Plasmas, 6, 954 (1999)
[48] De Sterck, H.; Poedts, S., Intermediate shocks in three-dimensional magnetohydrodynamic bow shock flows with multiple interacting shock fronts, Phys. Rev. Lett., 84, 5524 (2000)
[49] De Sterck, H.; Poedts, S.; Goedbloed, J. P., Dynamics of hot filaments in a tokamak plasma, J. Plasma Phys, 59, 277 (1998)
[50] Stone, J. M.; Hawley, J. F.; Evans, C. R.; Norman, M. L., A test suite for magnetohydrodynamical simulations, Astrophys. J, 388, 415 (1992)
[51] Stone, J. M.; Norman, M. L., ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. ii. The magnetohydrodynamic algorithms and tests, Astrophys. J. Suppl, 80, 791 (1992)
[52] Tanaka, T., Configurations of the solar wind flow and magnetic field around the planets with no magnetic field: Calculation by a new MHD simulation scheme, J. Geophys. Res, 98, 251 (1993)
[53] Tanaka, T., Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulations of inhomogeneous systems including strong background potential field, J. Comput. Phys, 111, 381 (1994) · Zbl 0797.76061
[54] Thompson, P. A., Compressible-Fluid Dynamics (1972) · Zbl 0251.76001
[55] Toth, G.; Keppens, R.; Botchev, M. A., Implicit and semi-implicit schemes in the Versatile Advection Code: Numerical tests, Astron. Astrophys, 332, 1159 (1998)
[56] Toth, G.; Odstrcil, D., Comparison of some Flux Corrected Transport and Total Variation Diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, J. Comput. Phys, 128, 82 (1996) · Zbl 0860.76061
[57] Toth, G., The ∇·\(B=0\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161, 605 (2000) · Zbl 0980.76051
[58] Turkel, E., Accuracy of Schemes with Non-uniform Meshes for Compressible Fluid Flows (1985)
[59] van Leer, B., Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method, J. Comput. Phys, 32, 101 (1979) · Zbl 1364.65223
[60] Zachary, A. L.; Malagoli, A.; Colella, P., A higher-order method for multidimensional ideal magnetohydrodynamics, SIAM J. Sci. Comput, 15, 263 (1994) · Zbl 0797.76063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.