×

Simulation of shock-generated instabilities. (English) Zbl 1027.76563


MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
Full Text: DOI

References:

[1] Recent examples can be found in A. Burrows, J. Hayes, and B. A. Fryxell, ”On the nature of core-collapse supernova explosions,” Astrophys. J. 450, 830 (1995); ASJOAB0004-637X
[2] J. M. Stone, J. Xu, and L. G. Mundy, ”Formation of ’bullets’ by hydrodynamical instabilities in stellar outflows,” Nature (London) 377, 315 (1995).NATUAS0028-0836
[3] Early work in the importance of Raleigh–Taylor instabilities in ICF implosions: R. E. Kidder, ”Laser-driven compression of hollow shells: Power requirements and stability limitations,” Nucl. Fusion 16, 3 (1976).NUFUAU0029-5515
[4] G. I. Taylor, ”The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I,” Proc. Soc. London 201, 192 (1950). · Zbl 0038.12201 · doi:10.1098/rspa.1950.0052
[5] R. D. Richtmyer, ”Taylor instability in shock acceleration of compressible fluids,” Commun. Pre Appl. Math. 13, 297 (1960).CPMAMV0010-3640
[6] E. E. Meshkov, ”Instability of the interface of two gases accelerated by a shock wave,” Fluid Dyn. 4, 101 (1969).FLDYAH0015-4628
[7] Recent studies of these instabilities are documented in these workshop proceedings and others in the same series: P. F. Linden, D. L. Youngs, and S. B. Dalziel (editors), ”Proceedings of the 4th International Workshop on the Physics of Compressible Turbulent Mixing,” Cambridge, England (29 March–1 April 1993).
[8] J. W. Shaner, ”Pattern formation by shock processes,” Physica D 12, 154 (1984).PDNPDT0167-2789
[9] J. M. Budzinski, R. F. Benjamin, and J. W. Jacobs, ”Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer,” Phys. Fluids 6, 3510 (1994).PHFLE61070-6631
[10] J. W. Jacobs, D. L. Klein, D. G. Jenkins, and R. F. Benjamin, ”Instability growth patterns of a shock-accelerated thin fluid layer,” Phys. Rev. Lett. 70, 583 (1993).PRLTAO0031-9007
[11] J. W. Jacobs, D. G. Jenkins, D. L. Klein, and R. F. Benjamin, ”Nonlinear growth of the shock-accelerated instability of a thin fluid layer,” J. Fluid Mech. 295, 23 (1995).JFLSA70022-1120
[12] K. A. Meyer and P. J. Blewett, ”Numerical investigation of the stability of a shock accelerated interface between two fluids,” Phys. Fluids 15, 753 (1972).PFLDAS0031-9171
[13] R. F. Benjamin, D. Besnard, and J. Haas, ”Shock and reshock of an unstable interface,” LANL Report LA-UR 92–1185, Los Alamos National Laboratory (1993).
[14] J. W. Grove, R. Holmes, D. H. Sharp, Y. Yang, and Q. Zhang, ”Quantitative theory of Richtmyer-Meshkov instability,” Phys. Rev. Lett. 71, 3473 (1993).PRLTAO0031-9007
[15] R. L. Holmes, J. W. Grove, and D. H. Sharp, ”Numerical investigation of Richtmyer–Meshkov instability using front tracking,” J. Fluid Mech. 301, 51 (1995).JFLSA70022-1120
[16] K. O. Mikaelian, ”Rayleigh-Taylor and Richtmyer-Meshkov instabilities in finite-thickness fluid layers,” Phys. Fluids 7, 888 (1995).PHFLE61070-6631
[17] M. L. Gittings, ”SAIC’s Adaptive grid Eulerian Hydrocode,” Defense Nuclear Agency Numerical Methods Symposium, 28–30 April 1992.
[18] N. Byrne, T. Betlach, and M. L. Gittings, ”RAGE: A 2D Adaptive Grid Eulerian Nonequilibrium Radiation Code,” Defense Nuclear Agency Numerical Methods Symposium, 28–30 April 1992.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.