×

Pullback permanence in a non-autonomous competitive Lotka–Volterra model. (English) Zbl 1027.35017

The goal of the paper is to study the long-time behaviour of the non-autonomous competitive system \[ \begin{aligned} u_t-\Delta u=u(\lambda -a(t)u-bv) &\quad\text{in } Q\times (s,+\infty),\\ v_t-\Delta v=v(\mu -cv-du) &\quad\text{in } Q\times (s,+\infty), \end{aligned} \] where \(Q\subset \mathbb{R}^N\) is a smooth bounded domain, \(b, c, d\) and \(a(t)\) are positive. Both the forwards and pullback behaviour of system are analysed. The notion of ”pullback permanence” is introduced. The existence of a non-autonomous attractor and conditions for pullback permanence are estblished. The main tools in the paper are the theory of attractors for non-autonomous differential equations, the sub-supersolution method and the spectral theory for linear elliptic equations.

MSC:

35B41 Attractors
35K57 Reaction-diffusion equations
Full Text: DOI

References:

[1] Arnold, L.; Chueshov, I., Order-preserving random dynamical systemsequilibria, attractors, applications, Dyn. Stability Systems, 13, 265-280 (1998) · Zbl 0938.37031
[2] Cantrell, R. S.; Cosner, C., Should a park be an island?, SIAM J. Appl. Math., 53, 219-252 (1993) · Zbl 0811.92022
[3] Cantrell, R. S.; Cosner, C., Practical persistence in ecological models via comparison methods, Proc. Roy. Soc. Edinburgh A, 126, 247-272 (1996) · Zbl 0845.92023
[4] Cantrell, R. S.; Cosner, C.; Hutson, V., Permanence in ecological systems with spatial heterogeneity, Proc. Roy. Soc. Edinburgh A, 123, 533-559 (1993) · Zbl 0796.92026
[5] Cantrell, R. S.; Cosner, C.; Hutson, V., Ecological models, permanence and spatial heterogeneity, Rocky Mountain J. Math., 26, 1-35 (1996) · Zbl 0851.92019
[6] Chepyzhov, V.; Vishik, M., A hausdorff dimension estimate for kernel sections of non-autonomous evolution equations, Indiana Univ. Math. J., 42, 3, 1057-1076 (1993) · Zbl 0819.35073
[7] Chepyzhov, V. V.; Vishik, M. I., Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl., 73, 279-333 (1994) · Zbl 0838.58021
[8] V.V. Chepyzhov, M.I. Vishik, Attractors for Equations of Mathematical Physics, AMS Colloquium Publications, Vol. 49, AMS, Providence, RI, 2002.; V.V. Chepyzhov, M.I. Vishik, Attractors for Equations of Mathematical Physics, AMS Colloquium Publications, Vol. 49, AMS, Providence, RI, 2002. · Zbl 0986.35001
[9] Chueshov, I., Order-preserving skew-product flows and non-autonomous parabolic systems, Acta Appl. Math., 65, 185-205 (2001) · Zbl 1121.37320
[10] Crauel, H.; Debussche, A.; Flandoli, F., Random attractors, J. Dyn. Differential Equations, 9, 341-397 (1997) · Zbl 0884.58064
[11] Hale, J., Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs (1998), AMS: AMS Providence, RI
[12] Hale, J.; Waltman, P., Persistence in infinite dimensional systems, SIAM J. Math. Anal., 9, 388-395 (1989) · Zbl 0692.34053
[13] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840 (1981), Springer: Springer Berlin · Zbl 0456.35001
[14] Hess, P., Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics, Vol. 247 (1991), Harlow Longman: Harlow Longman New York · Zbl 0731.35050
[15] Hess, P.; Lazer, A. C., On an abstract competition model and applications, Nonlinear Anal., 16, 917-940 (1991) · Zbl 0743.35033
[16] Hutson, V.; Schmitt, K., Permanence in dynamical systems, Math. Biosci., 111, 1-71 (1992) · Zbl 0783.92002
[17] R.A. Johnson, P.E. Kloeden, Nonautonomous attractors of skew product flows with digitized driving systems, Electronic J. Differential Equations 58 (2001) 16pp.; R.A. Johnson, P.E. Kloeden, Nonautonomous attractors of skew product flows with digitized driving systems, Electronic J. Differential Equations 58 (2001) 16pp. · Zbl 1005.34050
[18] Kloeden, P. E.; Schmalfuss, B., Nonautonomous systems, cocycle attractors and variable time-step discretization, Numer. Algorithms, 14, 141-152 (1997) · Zbl 0886.65077
[19] Kloeden, P. E.; Schmalfuss, B., Asymptotic behaviour of non-autonomous difference inclusions, Systems Control Lett., 33, 275-280 (1998) · Zbl 0902.93043
[20] Langa, J. A.; Robinson, J. C.; Suárez, A., Stability, instability, and bifurcation phenomena in non-autonomous differential equations, Nonlinearity, 15, 887-903 (2002) · Zbl 1004.37032
[21] J.A. Langa, J.C. Robinson, A. Suárez, Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system, submitted.; J.A. Langa, J.C. Robinson, A. Suárez, Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system, submitted. · Zbl 1044.34009
[22] J.A. Langa, A. Suárez, Pullback permanence for non-autonomous partial differential equations, Electron. J. Differential Equations 72 (2002).; J.A. Langa, A. Suárez, Pullback permanence for non-autonomous partial differential equations, Electron. J. Differential Equations 72 (2002). · Zbl 1010.35014
[23] López-Gómez, J., The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations, 127, 263-294 (1996), doi:10.1006/jdeq.1996.0070 · Zbl 0853.35078
[24] López-Gómez, J., On the structure of the permanence region for competing species models with general diffusivities and transport effects, Discrete Continuous Dyn. Systems, 2, 525-542 (1996) · Zbl 0952.92029
[25] López-Gómez, J.; Sabina de Lis, J. C., Coexistence states and global attractivity for some convective diffusive competing species models, Trans. Amer. Math. Soc., 347, 3797-3833 (1995) · Zbl 0848.35012
[26] Markus, L., Asymptotically autonomous differential systems, (Lefschetz, S., Contributions to the Theory of Nonlinear Oscillations III. Contributions to the Theory of Nonlinear Oscillations III, Annals of Mathematics Studies, Vol. 36 (1956), Princeton University Press: Princeton University Press Princeton, NJ), 17-29 · Zbl 0075.27002
[27] Mischaikow, K.; Smith, H. L.; Thieme, H. R., Asymptotically autonomous semiflowschain recurrence and Liapunov functions, Trans. Amer. Math. Soc., 347, 1669-1685 (1995) · Zbl 0829.34037
[28] Mora, X., Semilinear parabolic problems define semiflows on \(C^k\) spaces, Trans. Amer. Math. Soc., 278, 21-55 (1983) · Zbl 0525.35044
[29] Sell, G., Non-autonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127, 241-283 (1967) · Zbl 0189.39602
[30] B. Schmalfuss, Attractors for the non-autonomous dynamical systems, in: B. Fiedler, K. Gröger, J. Sprekels (Eds.), Proceedings of Equadiff 99, Berlin, Singapore World Scientific, Singapore, 2000, pp. 684-689.; B. Schmalfuss, Attractors for the non-autonomous dynamical systems, in: B. Fiedler, K. Gröger, J. Sprekels (Eds.), Proceedings of Equadiff 99, Berlin, Singapore World Scientific, Singapore, 2000, pp. 684-689. · Zbl 0971.37038
[31] Pao, C. V., Nonlinear Parabolic and Elliptic Equations (1992), Plenum Press: Plenum Press New York · Zbl 0780.35044
[32] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1988), Springer: Springer New York · Zbl 0662.35001
[33] Thieme, H. R., Uniform persistence and permanence for non-autonomous semiflows in population biology, Math. Biosci., 166, 173-201 (2000) · Zbl 0970.37061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.