×

Nonstationary Rayleigh waves on the thermally-insulated surfaces of some thermoelastic bodies of revolution. (English) Zbl 1026.74040

This investigation shows that during the propagation of nonstationary Rayleigh waves along stress-free thermally-insulated surfaces of thermoelastic bodies of revolution (cylinder, sphere torus and a cone) the change in amplitude of these waves, in the general case, is the product of three functions: a decaying exponential function, a power function, and a harmonic function. The occurrence of the decaying exponential function is associated with the coupling of strain and temperature fields.

MSC:

74J15 Surface waves in solid mechanics
74F05 Thermal effects in solid mechanics
Full Text: DOI

References:

[1] Nayfeh, A., Nemat-Nasser, S.: Thermoelastic waves in solids with thermal relaxation. Acta Mech.12, 53-69 (1971). · Zbl 0241.73026 · doi:10.1007/BF01178389
[2] Sinha, A. N., Sinha, S. B.: Velocity of Rayleigh waves with thermal relaxation in time. Acta Mech.23, 159-166 (1975). · Zbl 0367.73039 · doi:10.1007/BF01177676
[3] Agarwal, V. K.: On surface waves in generalized thermoelasticity. J. Elasticity8, 171-177 (1978). · Zbl 0372.73017 · doi:10.1007/BF00052480
[4] Dawn, N. C., Chakraborty, S. K.: On Rayleigh waves in Green-Lindsay model of generalized thermoelastic media. Indian J. Pure Appl. Math.20, 276-283 (1988). · Zbl 0657.73005
[5] Chandrasekharaiah, S.: Thermoelastic Rayleigh waves without energy dissipation. Mech. Res. Comm24, 93-101 (1997). · Zbl 0896.73012 · doi:10.1016/S0093-6413(96)00083-3
[6] Petrashen, G. I.: Rayleigh problem for surface waves in sphere case (in Russian). Dokl. Akad. Nauk SSSR53, 763-766 (1946). · Zbl 0061.21906
[7] Viktorov, I. A.: Surface waves on cylindrical surface of crystals. Sov. Phys. Acoust.20, 199-206 (1974).
[8] Rossikhin, Yu. A.: Impact of a rigid sphere onto an elastic half-space. Sov. Appl. Mech.22, 403-409 (1986). · doi:10.1007/BF00888537
[9] Rossikhin, Yu. A.: Nonstationary surface waves of ?diverging circles? type on conic surfaces of hexagonal crystals. Acta Mech.92, 183-192 (1992). · Zbl 0850.73064 · doi:10.1007/BF01174175
[10] Sobolev, S. L.: Application of the plane wave theory to the Lamb problem (in Russian). Trans. Seismol. Inst. Akad. Nauk SSSR No. 18, 1-14 (1932).
[11] Thomas, T. Y.: Plastic flow and fracture in solids. New York: Academic Press 1961. · Zbl 0095.38902
[12] Achenbach, J. D.: The influence of heat conduction on propagating stress jumps. J. Mech. Phys. Solids16, 273-282 (1968). · doi:10.1016/0022-5096(68)90035-5
[13] Hetnarski, R. B., Rossikhin, Yu. A., Shitikova, M. V.: A nonstationary Rayleigh wave of the ?diverging circle? type on the surface of a thermoelastic heat-insulated cone. In: Applied Mechanics in the Americas, vol. V (Rysz, M., Godoy, L. A., Su?rez, L. E., eds.), pp. 170-173 (5th Pan American Congress on Applied Mechanics, Puerto-Rico, 1997) Iowa: Univ. of Iowa 1997.
[14] Rossikhin, Yu. A., Shitikova, M. V.: A nonstationary Rayleigh wave on the surface of a thermoelastic heat-insulated torus. In: Proc. 2nd International Symposium on Thermal Stresses and Related Topics (Hetnarski, R. B., Noda, N., eds.), pp 71-74. Rochester, USA, 1997.
[15] Rossikhin, Yu. A., Shitikova, M. V.: A nonstationary Rayleigh wave of the ?diverging circle? type on the surface of a thermoelastic heat-insulated sphere. In: Structural dynamics: recent advances, vol. I (Ferguson, N. S., Wolfe, H. F., Mei, C., eds.), pp 113-127. (6th International Conference on Recent Advances in Structural Dynamics, Southampton, UK, 1997) Southampton: Inst. of Sound and Vibration Research 1997.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.