×

Three-loop Yang-Mills \(\beta\)-function via the covariant background field method. (English) Zbl 1025.81029

Summary: We demonstrate the effectivity of the covariant background field method by means of an explicit calculation of the 3-loop \(\beta\)-function for a pure Yang-Mills theory. To maintain manifest background invariance throughout our calculation, we stay in coordinate space and treat the background field non-perturbatively. In this way the presence of a background field does not increase the number of vertices and leads to a relatively small number of vacuum graphs in the effective action. Restricting to a covariantly constant background field in Fock-Schwinger gauge permits explicit expansion of all quantum field propagators in powers of the field strength only. Hence, Feynman graphs are at most logarithmically divergent. At 2-loop order only a single Feynman graph without subdivergences needs to be calculated. At 3-loop order 24 graphs remain. Insisting on manifest background gauge invariance at all stages of a calculation is thus shown to be a major labor saving device. All calculations were performed with Mathematica in view of its superior pattern matching capabilities. Finally, we describe briefly the extension of such covariant methods to the case of supergravity theories.

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T16 Nonperturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
81-04 Software, source code, etc. for problems pertaining to quantum theory

Software:

Mathematica

References:

[1] DeWitt, B. S., Dynamical Theory of Groups and Fields (1965), Gordon & Breach · Zbl 0169.57101
[2] DeWitt, B. S., Phys. Rev., 162, 1195 (1967)
[3] Honerkamp, J., Nucl. Phys. B, 36, 130 (1971)
[4] ’t Hooft, G., Nucl. Phys. B, 62, 444 (1973)
[5] ’t Hooft, G., The background field method in gauge field theories, (Acta Universitatis Wratislavensis 38, 12th Winter School of Theoretical Physics in Karpacz. Acta Universitatis Wratislavensis 38, 12th Winter School of Theoretical Physics in Karpacz, Functional and Probabilistic Methods in Quantum Field Theory, I (1975))
[6] DeWitt, B., (Quantum Gravity, II (1981), Oxford Univ. Press) · Zbl 0161.46501
[7] Abbott, L. F., Nucl. Phys. B, 185, 189 (1981)
[8] Boulware, D. G., Phys. Rev. D, 23, 389 (1981)
[9] Kluberg-Stern, H.; Zuber, J. B., Phys. Rev. D, 12, 482 (1975)
[10] Lüscher, M.; Weisz, P., Nucl. Phys. B, 452, 213 (1995) · Zbl 0925.81100
[11] Abbott, L. F.; Grisaru, M. T.; Schaefer, R. K., Nucl. Phys. B, 229, 372 (1983)
[12] Becchi, C.; Collina, R., Nucl. Phys. B, 562, 412 (1999)
[13] Ferrari, M. P.R.; Quadri, A., Ann. Phys., 294, 165 (2001)
[14] Politzer, H. D., Phys. Rev. Lett., 30, 1346 (1973)
[15] Gross, D. J.; Wilczek, F., Phys. Rev. Lett., 30, 1343 (1973)
[16] Cheng, E. E.T. P.; Li, L. F., Phys. Rev. D, 9, 2259 (1974)
[17] Caswell, W. E., Phys. Rev. Lett., 33, 244 (1974)
[18] Jones, D. R.T., Nucl. Phys B, 75, 531 (1974)
[19] Machacek, M. E.; Vaughn, M. T., Nucl. Phys B, 222, 83 (1983)
[20] Machacek, M. E.; Vaughn, M. T., Nucl. Phys. B, 236, 221 (1984)
[21] Machacek, M. E.; Vaughn, M. T., Nucl. Phys. B, 249, 70 (1985)
[22] Abbott, L. F., Acta Phys. Pol. B, 13, 33 (1982)
[23] Capper, D. M.; MacLean, A., Nucl. Phys. B, 203, 413 (1982)
[24] van Damme, R. M., Phys. Lett. B, 110, 239 (1982)
[25] Ichinose, S.; Omote, M., Nucl. Phys. B, 203, 221 (1982)
[26] Jack, I.; Osborn, H., Nucl. Phys. B, 207, 474 (1982)
[27] R.M.J. van Damme, The two-loop renormalization of general quantum field theories, PhD thesis, 1984, INIS-mf-9756; R.M.J. van Damme, The two-loop renormalization of general quantum field theories, PhD thesis, 1984, INIS-mf-9756
[28] ’t Hooft, G.; Veltman, M. J., Ann. Inst. H. Poincaré Phys. Théor. A, 20, 69 (1974) · Zbl 1422.83019
[29] Goroff, M. H.; Sagnotti, A., Phys. Lett. B, 160, 81 (1985)
[30] Goroff, M. H.; Sagnotti, A., Nucl. Phys. B, 266, 709 (1986)
[31] van de Ven, A. E.M., Nucl. Phys. B, 378, 309 (1992)
[32] Grassi, P. A., Nucl. Phys. B, 537, 527 (1999) · Zbl 0948.81661
[33] Grassi, P. A.; Hurth, T.; Steinhauser, M., Ann. Phys., 288, 197 (2001) · Zbl 0981.81057
[34] Grassi, P. A.; Hurth, T.; Steinhauser, M., Nucl. Phys. B, 610, 215 (2001) · Zbl 0971.81094
[35] Denner, A.; Dittmaier, S.; Weiglein, G., Acta Phys. Pol. B, 27, 3645 (1996)
[36] Mas, J.; Perez-Victoria, M.; Seijas, C.
[37] Tarasov, O. V.; Vladimirov, A. A.; Zharkov, A. Y., Phys. Lett. B, 93, 429 (1980)
[38] Larin, S. A.; Vermaseren, J. A.M., Phys. Lett. B, 303, 334 (1993)
[39] Pickering, A. G.; Gracey, J. A.; Jones, D. R., Phys. Lett. B, 510, 347 (2001) · Zbl 1062.81533
[40] Duff, M. J.; Ramon-Medrano, M., Phys. Rev. D, 12, 3357 (1975)
[41] Batalin, I.; Matinian, S.; Savvidy, G., Sov. J. Nucl. Phys., 26, 214 (1977)
[42] Savvidy, G. K., Phys. Lett. B, 71, 133 (1977)
[43] I.A. Batalin, G.K. Savvidy, Yerevan Physics Institute preprint EFI-299(24)-78 (1978); I.A. Batalin, G.K. Savvidy, Yerevan Physics Institute preprint EFI-299(24)-78 (1978)
[44] Shifman, M. A.; Vainshtein, A. I., Sov. J. Nucl. Phys., 44, 321 (1986)
[45] Adler, S. L.; Lieberman, J.; Ng, Y. J., Ann. Phys., 106, 279 (1977)
[46] Barvinsky, A. O.; Vilkovisky, G. A., Phys. Rep., 119, 1 (1985)
[47] Dubovikov, M. S.; Smilga, A. V., Nucl. Phys. B, 185, 109 (1981)
[48] Novikov, V. A.; Shifman, M. A.; Vainshtein, A. I.; Zakharov, V. I., Fortschr. Phys., 32, 585 (1984)
[49] Heisenberg, W.; Euler, H., Z. Phys., 98, 714 (1936) · Zbl 0013.18503
[50] Schwinger, J., Phys. Rev., 82, 664 (1951) · Zbl 0043.42201
[51] ’t Hooft, G.; Veltman, M. J., Nucl. Phys. B, 44, 189 (1972)
[52] Bollini, C. G.; Giambiagi, J. J., Phys. Lett. B, 40, 566 (1972)
[53] Ashmore, J. F., Lett. Nuovo Cimento, 4, 289 (1972)
[54] Cicuta, G. M.; Montaldi, E., Lett. Nuovo Cimento, 4, 329 (1972)
[55] Chetyrkin, K. G.; Tkachev, F. V., Phys. Lett. B, 114, 340 (1982)
[56] Chetyrkin, K. G.; Smirnov, V. A., Phys. Lett. B, 144, 419 (1984)
[57] Bogoliubov, N. N.; Parasiuk, O. S., Acta Math., 97, 227 (1957) · Zbl 0081.43302
[58] Braaten, E.; Leveille, J., Phys. Rev. D, 24, 1369 (1981)
[59] Wolfram, S., The Mathematica Book (1999), Cambridge Univ. Press · Zbl 0924.65002
[60] Shore, G. M., Ann. Phys., 137, 262 (1981)
[61] Brown, M. R.; Duff, M. J., Phys. Rev. D, 11, 2124 (1975)
[62] Nielsen, N. K.; van Nieuwenhuizen, P., Phys. Rev. D, 38, 3183 (1988)
[63] Fock, V. A., Sov. Phys., 12, 404 (1937) · Zbl 0018.18303
[64] Schwinger, J., Particles, Sources and Fields, Vol. II (1973)
[65] Avramidi, I. G., Nucl. Phys. B, 509, 577 (1991), Erratum
[66] Jack, I.; Osborn, H., J. Phys. A, 16, 1101 (1983)
[67] Grisaru, M. T., Phys. Lett. B, 66, 75 (1977)
[68] Deser, S.; Kay, J. H.; Stelle, K. S., Phys. Rev. Lett., 38, 527 (1977)
[69] Bern, Z.; Dixon, L.; Dunbar, D. C.; Perelstein, M.; Rozowsky, J. S., Nucl. Phys. B, 530, 401 (1998)
[70] Das, A.; Freedman, D. Z., Nucl. Phys. B, 114, 271 (1976)
[71] Fung, M. K.; van Nieuwenhuizen, P.; Jones, D. R., Phys. Rev. D, 22, 2995 (1980)
[72] Parker, L., (Levy, M.; Deser, S., Recent Developments In Gravitation, Cargese, 1978 (1978), Plenum: Plenum New York)
[73] Bunch, T. S.; Panangaden, P., J. Phys. A, 13, 919 (1980)
[74] Müller, U.; Schubert, C.; van de Ven, A. M., Gen. Relativ. Gravit., 19, 1759 (1999)
[75] Gates, S. J.; Grisaru, M. T.; Roc̆ek, M.; Siegel, W., Superspace or One Thousand and One Lessons in Supersymmetry (1983), Benjamin-Cummings · Zbl 0986.58001
[76] Grisaru, M. T.; Siegel, W., Nucl. Phys. B, 206, 496 (1982), Erratum
[77] Grisaru, M. T.; Zanon, D., Phys. Lett., 252, 578 (1985)
[78] Grisaru, M. T.; Zanon, D., Phys. Lett. B, 142, 359 (1984)
[79] Ogievetsky, V.; Sokatchev, E., Yad. Fiz., 32, 826 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.