×

Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. (English) Zbl 1023.83001

Summary: The article reviews the current status of a theoretical approach to the problem of the emission of gravitational waves by isolated systems in the context of general relativity. Part A of the article deals with general post-Newtonian sources. The exterior field of the source is investigated by means of a combination of analytic post-Minkowskian and multipolar approximations. The physical observables in the far-zone of the source are described by a specific set of radiative multipole moments. By matching the exterior solution to the metric of the post-Newtonian source in the near-zone we obtain the explicit expressions of the source multipole moments. The relationships between the radiative and source moments involve many non-linear multipole interactions, among them those associated with the tails (and tails-of-tails) of gravitational waves.
Part B of the article is devoted to the application to compact binary systems. We present the equations of binary motion, and the associated Lagrangian and Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration. The gravitational-wave energy flux, taking consistently into account the relativistic corrections in the binary moments as well as the various tail effects, is derived through 3.5PN order with respect to the quadrupole formalism. The binary’s orbital phase, whose prior knowledge is crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced from an energy balance argument.

MSC:

83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C35 Gravitational waves
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] Bekenstein, J.D., “Gravitational Radiation Recoil and Runaway Black Holes”, Astrophys. J., 183, 657-664, (1973). 2 · doi:10.1086/152255
[2] Bel, L., Damour, T., Deruelle, N., Ibañez, J., and Martin, J., “Poincaré-invariant gravitational-field and equations of motion of 2 point-like objects — The post-linear approximtion of general-relativity”, Gen. Relativ. Gravit., 13, 963-1004, (1981). 1.3 · doi:10.1007/BF00756073
[3] Blanchet, L., “Radiatioe gravitational fields in general-relativity. II. Asymptotic-behaviour at future null infinity”, Proc. R. Soc. London, Ser. A, 409, 383-399, (1987). 2, 8, 9, 9 · Zbl 0658.35084
[4] Blanchet, L., Contribution à l’étude du rayonnement gravitationnel émis par un système isolé, Habilitation, (Université Paris VI, Paris, France, 1990). 6
[5] Blanchet, L., “Time-asymmetric structure of gravitational radiation”, Phys. Rev. D, 47, 4392-4420, (1993). 2, 3, 10 · doi:10.1103/PhysRevD.47.4392
[6] Blanchet, L., “Second-post-Newtonian generation of gravitational radiation”, Phys. Rev. D, 51, 2559-2583, (1995). Related online version (cited on 24 January 1995): http://arXiv.org/abs/gr-gc/9501030. 2, 1.3, 5.2, 5.3, 6 · doi:10.1103/PhysRevD.51.2559
[7] Blanchet, L., “Energy losses by gravitational radiation in inspiralling compact binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 54, 1417-1438, (1996). 3, 4.2, 6, 9.3 · doi:10.1103/PhysRevD.54.1417
[8] Blanchet, L.; Marck, JA (ed.); Lasota, JP (ed.), Gravitational Radiation from Relativistic Sources, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September-6 October, 1995, Cambridge, U.K.
[9] Blanchet, L., “Gravitational radiation reaction and balance equations to post-Newtonian order”, Phys. Rev. D, 55, 714-732, (1997). Related online version (cited on 20 September 1996) http://arXiv.org/abs/gr-gc/9609049. 2,3,10 · doi:10.1103/PhysRevD.55.714
[10] Blanchet, L., “Gravitational-wave tails of tails”, Class. Quantum Grav., 15, 113-141, (1998). Related online version (cited on 7 October 1997): http://arXiv.org/abs/gr-gc/9710038. 2, 3, 6, 6, 14, 15, 16, 16, 10.2 · Zbl 0925.53027 · doi:10.1088/0264-9381/15/1/009
[11] Blanchet, L., “On the multipole expansion of the gravitational field”, Class. Quantum Grav., 15, 1971-1999, (1998). Related online version (cited on 29 January 1998): http://arXiv.org/abs/gr-gc/9710038. 2, 5.2, 5.3, 10 · Zbl 0937.83008 · doi:10.1088/0264-9381/15/7/013
[12] Blanchet, L., “Quadrupole-quadrupole gravitational waves”, Class. Quantum Grav., 15, 89-111, (1998). Related online version (cited on 7 October 1997): http://arXiv.org/abs/gr-gc/9710037. 2, 6, 6, 14, 14 · Zbl 0925.53030 · doi:10.1088/0264-9381/15/1/008
[13] Blanchet, L.; Schmidt, BG (ed.), Post-Newtonian Gravitational Radiation, 225-271 (2000), Berlin, Germany · Zbl 0977.83014
[14] Blanchet, L., and Damour, T., “Radiatioe gravitational fields in general relativity. I. General structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A, 320, 379-430, (1986). 2, 3, 5, 5, 4.1, 4.2, 4.3, 8 · Zbl 0604.35073
[15] Blanchet, L., and Damour, T., “Tail-transported temporal correlations in the dynamics of a gravitating system”, Phys. Rev. D, 37, 1410-1435, (1988). 2, 3, 6 · doi:10.1103/PhysRevD.37.1410
[16] Blanchet, L., and Damour, T., “Post-Newtonian generation of gravitational waves”, Ann. Inst. Henri Poincare A, 50, 377-408, (1989). 2, 5.2 · Zbl 0684.53059
[17] Blanchet, L., and Damour, T., “Hereditary effects in gravitational radiation”, Phys. Rev. D, 46, 4304-4319, (1992). 2, 3, 6 · doi:10.1103/PhysRevD.46.4304
[18] Blanchet, L., Damour, T., and Iyer, B.R., “Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second-post-Newtonian order”, Phys. Rev. D, 51, 5360-5386, (1995). Related online version (cited on 24 January 1995): http://arXiv.org/abs/gr-gc/9501029. Erratum Phys. Rev. D 54 (1996) 1860. 3, 10.1 · doi:10.1103/PhysRevD.51.5360
[19] Blanchet, L., Damour, T., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515-3518, (1995). Related online version (cited on 23 January 1995): http://arXiv.org/abs/gr-gc/9501027. 3 · doi:10.1103/PhysRevLett.74.3515
[20] Blanchet, L., and Faye, G., “Hadamard regularization”, J. Math. Phys., 41, 7675-7714, (2000). Related online version (cited on 28 July 2000): http://arXiv.org/abs/gr-qc/0004008. 3, 8.1, 8.1, 8.1, 8.1, 8.1, 8.1, 18, 8.2 · Zbl 0986.46024 · doi:10.1063/1.1308506
[21] Blanchet, L., and Faye, G., “On the equations of motion of point-particle binaries at the third post-Newtonian order”, Phys. Lett. A, 271, 58-64, (2000). Related online version (cited on 22 May 2000): http://arXiv.org/abs/gr-qc/0004009. 3, 18, 8.2, 8.2, 19, 20, 22 · Zbl 1223.83020 · doi:10.1016/S0375-9601(00)00360-1
[22] Blanchet, L., and Faye, G., “General relativistic dynamics of compact binaries at the third post-Newtonian order”, Phys. Rev. D, 63, 062005-1-43, (2001). Related online version (cited on 18 November 2000): http://arXiv.org/abs/gr-gc/0007051. 3, 2, 7, 18, 8.2, 8.2, 19, 20, 22, 23 · doi:10.1103/PhysRevD.63.062005
[23] Blanchet, L., and Faye, G., “Lorentzian regularization and the problem of point-like particles in general relativity”, J. Math. Phys., 42, 4391-4418, (2001). Related online version (cited on 4 April 2001): http://arXiv.org/abs/gr-qc/0006100. 3, 8.1, 18, 8.2, 19, 9.1 · Zbl 1009.83007 · doi:10.1063/1.1384864
[24] Blanchet, L., Faye, G., Iyer, B.R., and Joguet, B., “Gravitational-wave inspiral of compact binary systems to 7/2 post-Newtonian order”, Phys. Rev. D, 65, 061501-1-5, (2002). Related online version (cited on 26 May 2001): http://arXiv.org/abs/gr-gc/0105099. 3 · doi:10.1103/PhysRevD.65.061501
[25] Blanchet, L., Faye, G., and Ponsot, B., “Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order”, Phys. Rev. D, 58, 124002-1-20, (1998). Related online version (cited on 11 August 1998): http://arXiv.org/abs/gr-gc/9804079. 1.3, 3, 18, 9.1 · doi:10.1103/PhysRevD.58.124002
[26] Blanchet, L., Iyer, B.R., and Joguet, B., “Gravitational waves from inspiralling compact binaries: Energy flux to third post-Newtonian order”, Phys. Rev. D, 65, 064005-1-41, (2002). Related online version (cited on 26 May 2001): http://arXiv.org/abs/gr-gc/0105098. 3, 5.2, 19, 10.1, 23, 23 · doi:10.1103/PhysRevD.65.064005
[27] Blanchet, L., Iyer, B.R., Will, C.M., and Wiseman, A.G., “Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order”, Class. Quantum Grav., 13, 575-584, (1996). Related online version (cited on 13 February 1996): http://arXiv.org/abs/gr-gc/9602024. 3,10.4 · Zbl 0875.53011 · doi:10.1088/0264-9381/13/4/002
[28] Blanchet, L., and Sathyaprakash, B.S., “Signal analysis of gravitational wave tails”, Class. Quantum Grav., 11, 2807-2831, (1994). 1.2, 10.4 · doi:10.1088/0264-9381/11/11/020
[29] Blanchet, L., and Sathyaprakash, B.S., “Detecting a tail effect in gravitational-wave experiments”, Phys. Rev. Lett., 74, 1067-1070, (1995). 1.2, 10.4 · doi:10.1103/PhysRevLett.74.1067
[30] Blanchet, L., and Schäfer, G., “Higher-order gravitational-radiation losses in binary systems”, Mon. Not. R. Astron. Soc., 239, 845-867, (1989). 3, 10.1 · Zbl 0671.70009 · doi:10.1093/mnras/239.3.845
[31] Blanchet, L., and Schäfer, G., “Gravitational wave tails and binary star systems”, Class. Quantum Grav., 10, 2699-2721, (1993). 3, 13, 10.2 · doi:10.1088/0264-9381/10/12/026
[32] Bondi, H., van der Burg, M.G.J., and Metzner, A.W.K., “Gravitational waves in general relativity VII. Waves from axi-symmetric isolated systems”, Proc. R. Soc. London, Ser. A, 269, 21-52, (1962). 2, 8 · Zbl 0106.41903
[33] Bonnor, W.B., “Spherical gravitational waves”, Philos. Trans. R. Soc. London, Ser. A, 251, 233-271, (1959). 2, 3 · Zbl 0084.43906 · doi:10.1098/rsta.1959.0003
[34] Bonnor, W.B., and Rotenberg, M.A., “Transport of momentum by gravitational waves — Linear approximation”, Proc. R. Soc. London, Ser. A, 265, 109, (1961). 2 · Zbl 0100.40506 · doi:10.1098/rspa.1961.0226
[35] Bonnor, W.B., and Rotenberg, M.A., “Gravitational waves from isolated sources”, Proc. R. Soc. London Ser. A, 289, 247-274, (1966). 2 · doi:10.1098/rspa.1966.0010
[36] Burke, W.L., “Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions”, J. Math. Phys., 12(3), 401-418, (1971). 2 · doi:10.1063/1.1665603
[37] Burke, WL; Thorne, KS; Carmeli, M. (ed.); Fickler, SI (ed.); Witten, L. (ed.), Gravitational Radiation Damping, Proceedings of the Relativity Conference in the Midwest, Cincinnati, Ohio, June 2-6, 1969, New York, U.S.A. · doi:10.1007/978-1-4684-0721-1_12
[38] Campbell, W.B., Macek, J., and Morgan, T.A., “Relativistic time-dependent multipole analysis for scalar, electromagnetic, and gravitational fields”, Phys. Rev. D, 15, 2156-2164, (1977). 2 · doi:10.1103/PhysRevD.15.2156
[39] Campbell, W.B., and Morgan, T.A., “Debye Potentials For Gravitational Field”, Physica, 53(2), 264, (1971). 2 · doi:10.1016/0031-8914(71)90074-7
[40] Chandrasekhar, S., “The Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 142, 1488-1540, (1965). 1 · doi:10.1086/148432
[41] Chandrasekhar, S., and Esposito, F.P., “The 5/2-Post-Newtonian Equations of Hydrodynamics and Radiation Reaction in General Relativity”, Astrophys. J., 160, 153-179, (1970). 1 · doi:10.1086/150414
[42] Chandrasekhar, S., and Nutku, Y., “The Second Post-Newtonian Equations of Hydrodynamics in General Relativity”, Astrophys. J., 158, 55-79, (1969). 1 · doi:10.1086/150171
[43] Chicone, C., Kopeikin, S.M., Mashhoon, B., and Retzloff, D.G., “Delay equations and radiation damping”, Phys. Lett. A, 285, 17-26, (2001). Related online version (cited on 2 May 2001) http://arXiv.org/abs/gr-gc/0101122. 12 · Zbl 0969.78506 · doi:10.1016/S0375-9601(01)00327-9
[44] Christodoulou, D., “Nonlinear nature of gravitation and gravitational-wave experiments”, Phys. Rev. Lett., 67, 1486-1489, (1991). 6 · Zbl 0990.83504 · doi:10.1103/PhysRevLett.67.1486
[45] Christodoulou, D., and Schmidt, B.G., “Convergent and asymptotic iteration methods in general-relativity”, Commun. Math. Phys., 68, 275-289, (1979). 4 · doi:10.1007/BF01221128
[46] Cooperstock, F.I., and Booth, D.J., “Angular-Momentum Flux For Gravitational Radiation To Octupole Order”, Nuovo Cimento, 62(1), 163, (1969). 2 · doi:10.1007/BF02712475
[47] Crowley, R.J., and Thorne, K.S., “Generation of gravitational waves. II. Post-linear formalism revisited”, Astrophys. J., 215, 624-635, (1977). 2 · doi:10.1086/155397
[48] Cutler, C., Apostolatos, T.A., Bildsten, L., Finn, L.S., Flanagan, E.E., Kennefick, D., Markovic, D.M., Ori, A., Poisson, E., Sussman, G.J., and Thorne, K.S., “The last three minutes: Issues in gravitational wave measurements of coalescing compact binaries”, Phys. Rev. Lett., 70, 2984-2987, (1993). 1.2, B · doi:10.1103/PhysRevLett.70.2984
[49] Cutler, C., Finn, L.S., Poisson, E., and Sussman, G.J., “Gravitational radiation from a particle in circular orbit around a black hole. II. Numerical results for the nonrotating case”, Phys. Rev. D, 47, 1511-1518, (1993). 1.2, B · doi:10.1103/PhysRevD.47.1511
[50] Cutler, C., and Flanagan, E.E., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform?”, Phys. Rev. D, 49, 2658-2697, (1994). 1.2, B · doi:10.1103/PhysRevD.49.2658
[51] Damour, T., “The two-body problem and radiation damping in general-relativity”, C. R. Acad. Sci. Ser. 11, 294, 1355-1357, (1982). 1.3 · Zbl 0509.76057
[52] Damour, T.; Deruelle, N. (ed.); Piran, T. (ed.), Gravitational radiation and the motion of compact bodies, NATO Advanced Study Institute, Centre de physique des Houches, 2-21 June 1982, North-Holland
[53] Damour, T.; Carter, B. (ed.); Hartle, JB (ed.), An Introduction to the Theory of Gravitational Radiation, Proceedings of a NATO Advanced Study Institute on Gravitation in Astrophysics, Cargése, France, July 15-31, 1986, New York, U.S.A.
[54] Damour, T.; Hawking, SW (ed.); Israel, W. (ed.), The problem of motion in Newtonian and Einsteinian gravity, 128-198 (1987), Cambridge, U.K. · Zbl 0966.83509
[55] Damour, T., and Deruelle, N., “Generalized lagrangian of two point masses in the post-post-Newtonian approximation of general-relativity”, C. R. Acad. Sci. Ser. 11, 293, 537-540, (1981). 1.3, 9.2
[56] Damour, T., and Deruelle, N., “Radiation reaction and angular momentum loss in small angle gravitational scattering”, Phys. Lett. A, 87, 81-84, (1981). 1.3 · doi:10.1016/0375-9601(81)90567-3
[57] Damour, T., and Iyer, B.R., “Multipole analysis for electromagnetism and linearized gravity with irreducible Cartesian tensors”, Phys. Rev. D, 43, 3259-3272, (1991). 2 · doi:10.1103/PhysRevD.43.3259
[58] Damour, T., and Iyer, B.R., “Post-Newtonian generation of gravitational waves. II. The spin moments”, Ann. Inst. Henri Poincare A, 54, 115-164, (1991). 2 · Zbl 0746.53056
[59] Damour, T., Iyer, B.R., and Sathyaprakash, B.S., “Improved filters for gravitational waves from inspiraling compact binaries”, Phys. Rev. D, 57, 885-907, (1998). Related online version (cited on 18 August 1997): http://arXiv.org/abs/gr-gc/9708034. 1.2, B · doi:10.1103/PhysRevD.57.885
[60] Damour, T., Jaranowski, P., and Schiffer, G., “Poincare invariance in the ADM Hamiltonian approach to the general relativistic two-body problem”, Phys. Rev. D, 62, 021501-1-5, (2000). Related online version (cited on 21 October 2000): http://arXiv.org/abs/gr-gc/0003051. Erratum Phys. Rev. D 63 (2001) 029903. 3, 19, 9.2, 9.2, 9.2, 21 · doi:10.1103/PhysRevD.62.021501
[61] Damour, T., Jaranowski, P., and Schiffer, G., “Dimensional regularization of the gravitational interaction of point masses”, Phys. Lett. B, 513, 147-155, (2001). Related online version (cited on 11 May 2001): http://arXiv.org/abs/gr-gc/0105038. 3,19,19 · Zbl 0969.83506 · doi:10.1016/S0370-2693(01)00642-6
[62] Damour, T., Jaranowski, P., and Schiffer, G., “Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries”, Phys. Rev. D, 63, 044021, (2001). Related online version (cited on 10 November 2000) http://arXiv.org/abs/gr-qc/0010040. Erratum Phys. Rev. D 66 (2002) 029901. 3 · doi:10.1103/PhysRevD.63.044021
[63] Damour, T., and Schafer, G., “Lagrangians for n point masses at the second post-Newtonian approximation of general-relativity”, Gen. Relativ. Gravit., 17, 879-905, (1985). 1.3, 3, 9.2 · Zbl 0568.70014
[64] Damour, T., and Schmidt, B., “Reliability of perturbation theory in general relativity”, J. Math. Phys., 31, 2441-2458, (1990). 4 · Zbl 0723.53050 · doi:10.1063/1.528850
[65] Damour, T., Soffel, M., and Xu, C., “General-relativistic celestial mechanics. I. Method and definition of reference systems”, Phys. Rev. D, 43, 3273-3307, (1991). 19 · doi:10.1103/PhysRevD.43.3273
[66] de Andrade, V.C., Blanchet, L., and Faye, G., “Third post-Newtonian dynamics of compact binaries: Noetherian conserved quantities and equivalence between the harmonic-coordinate and ADM-Hamiltonian formalisms”, Class. Quantum Grav., 18, 753-778, (2001). Related online version (cited on 19 December 2000): http://arXiv.org/abs/gr-gc/0011063. 3, 9.2, 9.2, 9.2, 9.2 · Zbl 0973.83016 · doi:10.1088/0264-9381/18/5/301
[67] Deruelle, N., Sur les équations du mouvement et le rayonnement gravitationnel dun système binaire en Relativité Générale, Ph.D. Thesis, (Université Pierre et Marie Curie, Paris, 1982). 1.3
[68] Einstein, A., “Über Gravitationswellen”, Sitzungsber. K. Preuss. Akad. Wiss., 1918, 154-167, (1918). 1 · JFM 46.1295.02
[69] Einstein, A., Infeld, L., and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65-100, (1938). 1.3, B · Zbl 0018.28103 · doi:10.2307/1968714
[70] Epstein, R., and Wagoner, R.V., “Post-Newtonian generation of gravitational waves”, Astrophys. J., 197, 717-723, (1975). 2, 5.3 · doi:10.1086/153561
[71] Esposito, L.W., and Harrison, E.R., “Properties of the Hulse-Taylor binary pulsar system”, Astrophys. J. Lett., 196, Ll-L2, (1975). 2 · doi:10.1086/181729
[72] Finn, L.S., and Chernoff, D.F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198-2219, (1993). 1.2, B · doi:10.1103/PhysRevD.47.2198
[73] Fock, V.A., “On motion of finite masses in general relativity”, J. Phys. (Moscow, 1(2), 81-116, (1939). 1.3 · JFM 65.1047.04
[74] Fock, V.A., Theory of space, time and gravitation, (Pergamon, London, U.K., 1959). 8 · Zbl 0085.42301
[75] Gal’tsov, D.V., Matiukhin, A.A., and Petukhov, V.I., “Relativistic corrections to the gravitational radiation of a binary system and the fine structure of the spectrum”, Phys. Lett. A, 77, 387-390, (1980). 3 · doi:10.1016/0375-9601(80)90728-8
[76] Geroch, R., and Horowitz, G.T., “Asymptotically simple does not imply asymptotically Minkowskian”, Phys. Rev. Lett., 40, 203-206, (1978). 2, 9 · doi:10.1103/PhysRevLett.40.203
[77] Gopakumar, A., and Iyer, B.R., “Gravitational waves from inspiraling compact binaries: Angular momentum flux, evolution of the orbital elements and the waveform to the second post-Newtonian order”, Phys. Rev. D, 56, 7708-7731, (1997). Related online version (cited on 15 October 1997): http://arXiv.org/abs/gr-gc/9710075. 3 · doi:10.1103/PhysRevD.56.7708
[78] Gradshteyn, I.S., and Ryzhlk, I.M., Table of Integrals, Series and Products, (Academic Press, San Diego, U.S.A.; London, U.K., 1980). 10.2 · Zbl 0521.33001
[79] Grishchuk, LP; Kopeikin, SM; Kovalevsky, J. (ed.); Brumberg, VA (ed.), Equations of motion for isolated bodies with relativistic corrections including the radiation-reaction force, Proceedings of the 114th Symposium of the International Astronomical Union, Leningrad, USSR, May 28-31, 1985, Dordrecht, Netherlands · doi:10.1007/978-94-009-4602-6_3
[80] Hadamard, J., Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, (Hermann, Paris, France, 1932). 8.1 · JFM 58.0519.16
[81] Hunter, A.J., and Rotenberg, M.A., “The double-series approximation method in general relativity. I. Exact solution of the (24) approximation. II. Discussion of ‘wave tails’ in the (2s) approximation”, J. Phys. A, 2, 34-49, (1969). 2 · doi:10.1088/0305-4470/2/1/007
[82] Isaacson, R.A., and Winicour, J., “Harmonic and Null Descriptions of Gravitational Radiation”, Phys. Rev., 168, 1451-1456, (1968). 8 · doi:10.1103/PhysRev.168.1451
[83] Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: Formulation, the first post-Newtonian order, and multipole terms”, Phys. Rev. D, 62, 064002-1-12, (2000). Related online version (cited on 17 May 2000): http://arXiv.org/abs/gr-gc/9910052. 1.3 · doi:10.1103/PhysRevD.62.064002
[84] Itoh, Y., Futamase, T., and Asada, H., “Equation of motion for relativistic compact binaries with the strong field point particle limit: The second and half post-Newtonian order”, Phys. Rev. D, 63, 064038-1-21, (2001). Related online version (cited on 30 January 2001): http://arXiv.org/abs/gr-gc/0101114. 1.3 · doi:10.1103/PhysRevD.63.064038
[85] Iyer, B.R., and Will, C.M., “Post-Newtonian gravitational radiation reaction for two-body systems”, Phys. Rev. Lett., 70, 113-116, (1993). 3, 10 · doi:10.1103/PhysRevLett.70.113
[86] Iyer, B.R., and Will, C.M., “Post-Newtonian gravitational radiation reaction for two-body systems: Nonspinning bodies”, Phys. Rev. D, 52, 6882-6893, (1995). 3, 10 · doi:10.1103/PhysRevD.52.6882
[87] Jaranowski, P., and Schiffer, G., “Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274-7291, (1998). Related online version (cited on 17 December 1997): http://arXiv.org/abs/gr-gc/9712075. Erratum Phys. Rev. D 63 (2001) 029902. 3, 8.2, 9.2 · doi:10.1103/PhysRevD.57.7274
[88] Jaranowski, P., and Schiffer, G., “The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003-1-7, (1999). Related online version (cited on 23 June 1999): http://arXiv.org/abs/gr-gc/9906092. 3, 8.2, 9.2 · doi:10.1103/PhysRevD.60.124003
[89] Jaranowski, P., and Schafer, G., “The binary black-hole dynamics at the third post-Newtonian order in the orbital motion”, Ann. Phys. (Berlin, 9, 378-383, (2000). Related online version (cited on 14 March 2000): http://arXiv.org/abs/gr-gc/0003054. 3, 8.2, 9.2 · Zbl 0971.83041 · doi:10.1002/(SICI)1521-3889(200005)9:3/5<378::AID-ANDP378>3.0.CO;2-M
[90] Kidder, L.E., “Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects”, Phys. Rev. D, 52, 821-847, (1995). Related online version (cited on 8 June 1995) http://arXiv.org/abs/gr-gc/9506022. 24 · doi:10.1103/PhysRevD.52.821
[91] Kidder, L.E., Will, C.M., and Wiseman, A.G., “Spin effects in the inspiral of coalescing compact binaries”, Phys. Rev. D, 47, R4183-R4187, (1993). 24 · doi:10.1103/PhysRevD.47.R4183
[92] Kochanek, C.S., “Coalescing Binary Neutron Stars”, Astrophys. J., 398(1), 234-247, (October, 1992). 1.2 · doi:10.1086/171851
[93] Kopeikin, S.M., “The equations of motion of extended bodies in general-relativity with conservative corrections and radiation damping taken into account”, Astron. Zh., 62, 889-904, (1985). 1.3, 19
[94] Kopeikin, S.M., “Celestial Coordinate Reference Systems in Curved Spacetime”, Celest. Mech., 44, 87, (1988). 19 · Zbl 0678.70020 · doi:10.1007/BF01230709
[95] Kopeikin, S.M., Schiffer, G., Gwinn, C.R., and Eubanks, T.M., “Astrometric and timing effects of gravitational waves from localized sources”, Phys. Rev. D, 59, 084023-1-29, (1999). Related online version (cited on 17 February 1999): http://arXiv.org/abs/gr-gc/9811003. 2 · doi:10.1103/PhysRevD.59.084023
[96] Krolak, A., Kokkotas, K.D., and Schiffer, G., “Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary”, Phys. Rev. D, 52, 2089-2111, (1995). Related online version (cited on 7 March 1995): http://arXiv.org/abs/gr-gc/9503013. 1.2, B · doi:10.1103/PhysRevD.52.2089
[97] Landau, L.D., and Lifshitz, E.M., The classical theory of fields, (Pergamon, Oxford, U.K., 1971), 3rd edition. 1, 23 · Zbl 0178.28704
[98] Lorentz, H.A., and Droste, J., in The Collected Papers of H.A. Lorentz, Vol. 5, (Nijhoff, The Hague, Netherlands, 1937), Versl. K. Akad. Wet. Amsterdam 26 (1917) 392 and 649. 1.3
[99] Madore, J., No article title, Ann. Inst. Henri Poincare, 12, 285 (1970)
[100] Martin, J., and Sanz, J.L., “Slow motion approximation in predictive relativistic mechanics. II. Non-interaction theorem for interactions derived from the classical field-theory”, J. Math. Phys., 20, 25-34, (1979). 9.2 · doi:10.1063/1.523958
[101] Mathews, J., “Gravitational multipole radiation”, J. Soc. Ind. Appl. Math., 10, 768-780, (1962). 2 · Zbl 0114.21201 · doi:10.1137/0110059
[102] Mino, Y., Sasaki, M., Shlbata, M., Tagoshi, H., and Tanaka, T., “Black Hole Perturbation”, Prog. Theor. Phys. Suppl., 128, 1-121, (1997). Related online version (cited on 12 December 1997) http://arXiv.org/abs/gr-gc/9712057. 3 · Zbl 0985.83510 · doi:10.1143/PTPS.128.1
[103] Moritz, H., Advanced Physical Geodesy, (H. Wichmann, Karlsruhe, Germany, 1980). 1.2
[104] Newhall, X.X., Standish, E.M., and Williams, J.G., “DE-102 — A Numerically Integrated Ephemeris of the Moon and Planets Spanning 44 Centuries”, Astron. Astrophys., 125, 150-167, (1983). B · Zbl 0529.70017
[105] Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Physically acceptable solution of Einteln’s equation for many-body system”, Prog. Theor. Phys., 50, 492-514, (1973). 1.3, 3 · doi:10.1143/PTP.50.492
[106] Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Coordinate condition and higher-order gravitational potential in canonical formalism”, Prog. Theor. Phys., 51, 1598-1612, (1974). 1.3, 3 · doi:10.1143/PTP.51.1598
[107] Ohta, T., Okamura, H., Kimura, T., and Hiida, K., “Higher-order gravitational potential for many-body system”, Prog. Theor. Phys., 51, 1220-1238, (1974). 1.3, 3 · doi:10.1143/PTP.51.1220
[108] Owen, B.J., Tagoshi, H., and Ohashi, A., “Nonprecessional spin-orbit effects on gravitational waves from inspiraling compact binaries to second post-Newtonian order”, Phys. Rev. D, 57, 6168-6175, (1998). Related online version (cited on 31 October 1997): http://arXiv.org/abs/gr-gc/9710134. 24 · doi:10.1103/PhysRevD.57.6168
[109] Papapetrou, A., “Equations of motion in general relativity”, Proc. Phys. Soc. London, Sect. B, 64, 57-75, (1951). 1.3 · Zbl 0044.42104
[110] Papapetrou, A., No article title, Ann. Inst. Henri Poincare, XIV, 79 (1962)
[111] Papapetrou, A., “Relativité — une formule pour le rayonnement gravitationnel en première approximation”, C. R. Acad. Sci. Ser. II, 255, 1578, (1962). 2 · Zbl 0100.40504
[112] Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015-1-28, (2000). Related online version (cited on 31 July 2000): http://arXiv.org/abs/gr-gc/0007087. 2,5.3 · doi:10.1103/PhysRevD.62.124015
[113] Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order”, Phys. Rev. D, 65, 104008-1-21, (2001). Related online version (cited on 31 December 2001): http://arXiv.org/abs/gr-gc/0201001. 3 · doi:10.1103/PhysRevD.65.104008
[114] Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66-68, (1963). 2, 8, 4 · doi:10.1103/PhysRevLett.10.66
[115] Penrose, R., “Zero rest-mass fields including gravitation — asymptotic behaviour”, Proc. R. Soc. London, Ser. A, 284, 159, (1965). 2, 8, 4 · Zbl 0129.41202
[116] Peters, P.C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev., 136, 131224-131232, (1964). 2, 1.2 · Zbl 0129.41201 · doi:10.1103/PhysRev.136.B1224
[117] Peters, P.C., and Mathews, J., “Gravitational Radiation from Point Masses in a Keplerian Orbit”, Phys. Rev., 131, 435-440, (1963). 2 · Zbl 0114.43902 · doi:10.1103/PhysRev.131.435
[118] Petrova, N.M., “Ob Uravnend Dvizhenlya 1 Tenzore Materil dlya Sistemy Konechnykh Mass v Obshchel Teord Otnositielnosti”, J. Exp. Theor. Phys., 19(11), 989-999, (1949). 1.3
[119] Pirani, FAE; Trautman, A. (ed.); Pirani, FAE (ed.); Bondi, H. (ed.), Introduction to Gravitational Radiation Theory, 249-373 (1964), Englewood Cliffs, U.S.A.
[120] Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I. Analytic results for the nonrotating case”, Phys. Rev. D, 47, 1497-1510, (1993). 3 · doi:10.1103/PhysRevD.47.1497
[121] Poisson, E., “Gravitational radiation from a particle in circular orbit around a black-hole. VI. Accuracy of the post-Newtonian expansion”, Phys. Rev. D, 52, 5719-5723, (1995). Related online version (cited on 11 February 1997): http://arXiv.org/abs/gr-gc/9505030. Addendum Phys. Rev. D 55 (1997) 7980-7981. 1.2, B · doi:10.1103/PhysRevD.52.5719
[122] Poisson, E., and Will, C.M., “Gravitational waves from inspiralling compact binaries: Parameter estimation using second-post-Newtonian waveforms”, Phys. Rev. D, 52, 848-855, (1995). Related online version (cited on 24 February 1995): http://arXiv.org/abs/gr-gc/9502040. 1.2, B · doi:10.1103/PhysRevD.52.848
[123] Poujade, O., and Blanchet, L., “Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansions”, (2001). URL (cited on 21 December 2001): http://arXiv.org/abs/gr-gc/0112057. 11
[124] Press, W.H., “Gravitational Radiation from Sources Which Extend Into Their Own Wave Zone”, Phys. Rev. D, 15, 965-968, (1977). 2 · doi:10.1103/PhysRevD.15.965
[125] Riesz, M., “L’integrale de Riemann-Liouville et le probleme de Cauchy”, Acta Math., 81, 1-218, (1949). 8.1 · Zbl 0033.27601 · doi:10.1007/BF02395016
[126] Sachs, R., and Bergmann, P.G., “Structure of particles in linearized gravitational theory”, Phys. Rev., 112, 674-680, (1958). 2 · Zbl 0083.43001 · doi:10.1103/PhysRev.112.674
[127] Sachs, R.K., “Gravitational waves in general relativity VI. The outgoing radiation condition”, Proc. R. Soc. London, Ser. A, 264, 309-338, (1961). 2 · Zbl 0098.19204
[128] Sachs, R.K., “Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time”, Proc. R. Soc. London, Ser. A, 270, 103-126, (1962). 2, 8 · Zbl 0101.43605
[129] Sasaki, M., “Post-Newtonian Expansion of the Ingoing-Wave Regge-Wheeler Function”, Prog. Theor. Phys., 92, 17-36, (1994). 3 · doi:10.1143/ptp/92.1.17
[130] Schafer, G., “The Gravitational Quadrupole Radiation-Reaction Force and the Canonical Formalism of ADM”, Ann. Phys. (N.Y.), 161, 81-100, (1985). 1.3 · doi:10.1016/0003-4916(85)90337-9
[131] Schafer, G., “The ADM Hamiltonian at the Postlinear Approximation”, Gen. Relativ. Gravit., 18, 255-270, (1986). 1.3 · doi:10.1007/BF00765886
[132] Schwartz, L., “Sur l’impossibilite de la multiplication des distributions”, C. R. Acad. Sci. Ser. 11, 239, 847-848, (1954). 18, 19 · Zbl 0056.10602
[133] Schwartz, L., Théorie des distributions, (Hermann, Paris, France, 1978). 8.1, 8.1, 8.1 · Zbl 0399.46028
[134] Sellier, A., “Hadamard’s finite part concept in dimension n≥2, distributional definition, regularization forms and distributional derivatives”, Proc. R Soc. London, Ser. A, 445, 69-98, (1994). 8.1 · Zbl 0815.46034 · doi:10.1098/rspa.1994.0049
[135] Tagoshi, H., and Nakamura, T., “Gravitational waves from a point particle in circular orbit around a black hole: Logarithmic terms in the post-Newtonian expansion”, Phys. Rev. D, 49, 4016-4022, (1994). 1.2, 3, B · doi:10.1103/PhysRevD.49.4016
[136] Tagoshi, H., Ohashi, A., and Owen, B.J., “Gravitational field and equations of motion of spinning compact binaries to 2.5-post-Newtonian order”, Phys. Rev. D, 63, 044006-1-14, (2001). Related online version (cited on 4 October 2000): http://arXiv.org/abs/gr-gc/0010014. 24 · doi:10.1103/PhysRevD.63.044006
[137] Tagoshi, H., and Sasaki, M., “Post-Newtonian Expansion of Gravitational Waves from a Particle in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 92, 745-771, (1994). 3, 10.2 · doi:10.1143/ptp/92.4.745
[138] Tanaka, T., Tagoshi, H., and Sasaki, M., “Gravitational Waves by a Particle in Circular Orbit around a Schwarzschild Black Hole”, Prog. Theor. Phys., 96, 1087-1101, (1996). 3 · doi:10.1143/PTP.96.1087
[139] Taylor, J.H., “Pulsar timing and relativistic gravity”, Class. Quantum Grav., 10, 167-174, (1993). 2, B · doi:10.1088/0264-9381/10/S/017
[140] Taylor, J.H., Fowler, L.A., and McCulloch, P.M., “Measurements of general relativistic effects in the binary pulsar PSR 1913+16”, Nature, 277, 437-440, (1979). 2, B · doi:10.1038/277437a0
[141] Taylor, J.H., and Weisberg, J.M., “A New Test of General Relativity: Gravitational Radiation and the Binary Pulsar PSR 1913+16”, Astrophys. J., 253, 908-920, (1982). 2, B · doi:10.1086/159690
[142] Thorne, K.S., “Multipole expansions of gravitational radiation”, Rev. Mod. Phys., 52, 299-340, (1980). 2, 3, 5, 5, 5.3 · doi:10.1103/RevModPhys.52.299
[143] Thorne, KS; Deruelle, N. (ed.); Piran, T. (ed.), The theory of gravitational radiation: An introductory review, NATO Advanced Study Institute, Centre de physique des Houches, 2-21 June 1982, Amsterdam, Netherlands
[144] Thorne, KS; Hawking, SW (ed.); Israel, W. (ed.), Gravitational radiation, 330-458 (1987), Cambridge, U.K. · Zbl 0966.83515
[145] Thorne, K.S., “Gravitational-wave bursts with memory: The Christodoulou effect”, Phys. Rev. D, 45, 520, (1992). 6 · doi:10.1103/PhysRevD.45.520
[146] Thorne, K.S., and Hartle, J.B., “Laws of motion and precession for black holes and other bodies”, Phys. Rev. D, 31, 1815-1837, (1985). 19 · doi:10.1103/PhysRevD.31.1815
[147] Thorne, K.S., and Kovacs, S.J., “Generation of gravitational waves. I. Weak-field sources”, Astrophys. J., 200, 245-262, (1975). 2 · doi:10.1086/153783
[148] Wagoner, R.V., “Test for Existence of Gravitational Radiation”, Astrophys. J. Lett., 196, L63-L65, (1975). 2 · Zbl 0709.62503 · doi:10.1086/181745
[149] Wagoner, R.V., and Will, C.M., “Post-Newtonian gravitational radiation from orbiting point masses”, Astrophys. J., 210, 764-775, (1976). 3 · doi:10.1086/154886
[150] Will, CM; Sasaki, M. (ed.), Gravitational Waves from Inspiralling Compact Binaries: A Post-Newtonian Approach, Proceedings of the 8th Nishinomiya-Yukawa Memorial Symposium, Shukugawa City Hall, Nishinomiya, Hyogo, Japan, October 28-29, 1993, Tokyo, Japan
[151] Will, C.M., “Generation of Post-Newtonian Gravitational Radiation via Direct Integration of the Relaxed Einstein Equations”, Prog. Theor. Phys. Suppl., 136, 158-167, (1999). Related online version (cited on 15 October 1999): http://arXiv.org/abs/gr-gc/9910057. 2,5.3 · Zbl 1169.83301 · doi:10.1143/PTPS.136.158
[152] Will, C.M., and Wiseman, A.G., “Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order”, Phys. Rev. D, 54, 4813-4848, (1996). Related online version (cited on 5 August 1996): http://arXiv.org/abs/gr-gc/9608012. 2, 3, 5.3, 5.3 · doi:10.1103/PhysRevD.54.4813
[153] Wiseman, A.G., “Coalescing binary-systems of compact objects to 5/2-post-Newtonian order. IV. The gravitational-wave tail”, Phys. Rev. D, 48, 4757-4770, (1993). 3 · doi:10.1103/PhysRevD.48.4757
[154] Wiseman, A.G., and Will, C.M., “Christodoulou’s nonlinear gravitational-wave memory: Evaluation in the quadrupole approximation”, Phys. Rev. D, 44, R2945-R2949, (1991). 6 · doi:10.1103/PhysRevD.44.R2945
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.