×

Best constants in Sobolev trace inequalities. (English) Zbl 1023.58008

Summary: We establish the best constant for a Sobolev trace inequality on compact Riemannian manifolds with boundary. More specifically, let \(1< p< n\) and \[ {1\over\overline K(n,p)}= \inf_{\substack{\nabla u\in L^p(\mathbb{R}^n_+)\\u\in L^{\overline p^*}(\partial\mathbb{R}^n_+)\setminus \{0\}}} {\int_{\mathbb{R}^n_+}|\nabla u|^p\over (\int_{\partial\mathbb{R}^n_+}|u|^{\overline p^*})^{p,\overline p^*}}, \] where \(\overline p^*= p(n- 1)/(n- p)\). We prove that for any compact \(n\)-dimensional Riemannian manifold with boundary \((M,g)\), for any \(\varepsilon> 0\) there exists \(A_\varepsilon> 0\) such that \[ \|u\|^p_{L^{\overline p^*}(\partial M)}\leq (\overline K(n, p)+ \varepsilon)\|\nabla_g u\|^p_{L^p(M)}+ A_\varepsilon\|u\|^p_{L^p(\partial M)} \] for all \(u\in H^{1,p}(M)\).

MSC:

58E35 Variational inequalities (global problems) in infinite-dimensional spaces
Full Text: DOI

References:

[1] Azorero, J. G.; Peral Alonso, I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323, 877-895 (1991) · Zbl 0729.35051
[2] D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on Probability Theory (Saint-Flour, 1992), Lecture Notes in Mathematics, Vol. 1581, Springer, Berlin, 1994, pp. 1-114.; D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on Probability Theory (Saint-Flour, 1992), Lecture Notes in Mathematics, Vol. 1581, Springer, Berlin, 1994, pp. 1-114. · Zbl 0856.47026
[3] Beckner, W., Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math., 138, 213-242 (1993) · Zbl 0826.58042
[4] Brezis, H.; Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88, 486-490 (1983) · Zbl 0526.46037
[5] Cherrier, P., Meilleures constantes dans des iné galités relatives aux espaces de Sobolev, Bull. Sci. Math., 108, 225-262 (1984) · Zbl 0547.58017
[6] Escobar, J. F., Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J., 37, 687-698 (1988) · Zbl 0666.35014
[7] L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Regional CBMS Regional Conference Series in Mathematics, Vol. 74, American Mathematical Society, Providence, RI, 1990.; L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Regional CBMS Regional Conference Series in Mathematics, Vol. 74, American Mathematical Society, Providence, RI, 1990. · Zbl 0698.35004
[8] E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes, Vol. 5, Courant Institute of Mathematical Sciences, New York University, New York, 1999.; E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, Courant Lecture Notes, Vol. 5, Courant Institute of Mathematical Sciences, New York University, New York, 1999. · Zbl 0981.58006
[9] Li, Y. Y.; Zhu, M., Sharp Sobolev trace inequalities on Riemannian manifolds with boundary, Commun. Pure Appl. Math., 50, 449-487 (1997) · Zbl 0869.58054
[10] Lions, P.-L., The concentration-compactness principle in the calculus of variations, the limit case, part 1, Rev. Mat. Iberoamericana, 1, 145-201 (1985) · Zbl 0704.49005
[11] Lions, P.-L., The concentration-compactness principle in the calculus of variations, the limit case, part 2, Rev. Mat. Iberoamericana, 1, 45-121 (1985) · Zbl 0704.49006
[12] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems, Applied Mathematical Sciences, Vol. 74 (1989), Springer: Springer New York · Zbl 0676.58017
[13] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Classical and New Inequalities in Analysis, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 1993.; D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Classical and New Inequalities in Analysis, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, 1993. · Zbl 0771.26009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.