×

Orders of elements of equivariant \(J\)-groups of complex projective spaces. (English) Zbl 1023.55008

Let \(G\) be a finite group and let \(X\) be a compact \(G\)-space. Then the equivariant \(J\)-group \(JO_G(X)\) is defined to be the set of all stable \(G\)-fibre homotopy equivalence classes of real \(G\)-vector bundles over \(X\), so that there is a natural surjection \(J: \widetilde{KO}_G(X)\to JO_G(X)\). If \(X\) is a trivial \(G\)-space then one has \(KO_G(X)\cong KO(X)\otimes R(G; \mathbb{R})\oplus K(X)\otimes R(G;\mathbb{C})\oplus KSp(X)\otimes R(G;\mathbb{H})\), where \(R(G;\mathbb{F})\) is the free Abelian group generated by the irreducible real \(G\)-modules with their endomorphism algebra equal to \(\mathbb{F}\).
Assume that \(G\) has no quaternionic type irreducible representations, that is, \(R(G;\mathbb{H})= 0\) holds and let \(\mathbb{C} P^n\) denote the complex projective \(n\)-space with trivial \(G\)-action. Then from the above decomposition one obtains expressions of elements \(w\in KO_G(\mathbb{C} P^n)\) in terms of the Hopf line bundle over \(\mathbb{C} P^n\) and real and complex type irreducible representations of \(G\). In this paper the author gives an explicit formula for computing the order of \(J(w)\) for \(w\in \widetilde{KO}_G(\mathbb{C} P^n)\) (Theorems 1.1 and 1.3). This formula is, however, too involved for brief summary here due to the complexity of the data needed to describe it. The author also gives an example of the order computation which deals with a certain element of \(JO_{\mathbb{Z}/5}(\mathbb{C} P^4)\). This sample computation shows that the formula given here is the best possible. The proof is done by division into two steps, the \(p\)-group case and the general case, and makes use of the results of T. tom Dieck [Transformation groups and representation theory, Lecture Notes in Math. 766, Springer-Verlag (1979; Zbl 0445.57023)] and J. E. McClure [Math. Z. 183, 229-253 (1983; Zbl 0521.55011)].

MSC:

55Q50 \(J\)-morphism
19L47 Equivariant \(K\)-theory
55Q52 Homotopy groups of special spaces
19L20 \(J\)-homomorphism, Adams operations
Full Text: DOI

References:

[1] Adams, J. F., Vector fields on spheres, Ann. Math., 75, 603-632 (1962) · Zbl 0112.38102
[2] Adams, J. F.; Walker, G., On complex Stiefel manifolds, (Proc. Cambridge Phil. Soc., 61 (1965)), 81-103 · Zbl 0142.40903
[3] Atiyah, M. F.; Todd, J. A., On complex Stiefel Manifolds, (Proc. Cambridge Phil. Soc., 56 (1960)), 342-353 · Zbl 0109.16102
[4] Becker, J. C., The span of sphericalforms, Amer. J. Math., 94, 991-1026 (1972) · Zbl 0258.57005
[5] Bröcker, T.; tom Dieck, T., Representations of Compact Lie Groups (1985), Springer-Verlag New York Inc · Zbl 0581.22009
[6] tom Dieck, T., Transformation Groups and Representation Theory, (Lecture Notes in Math., 766 (1979), Springer-Verlag: Springer-Verlag Berlin and New York) · Zbl 0445.57023
[7] Hauschild, H.; Waner, S., Equivariant Dold theorem mod k and Adams conjecture, Illinois J. Math., 27, 52-66 (1983) · Zbl 0522.55017
[8] Kakutani, S., The equivariant span of of unit spheres in representation spaces, Osaka J. Math., 20, 439-460 (1983) · Zbl 0525.57019
[9] Lam, K. Y., Fibre homotopic trivialbundles over \(CP^{n−1}\), (Proc. Amer. Math. Soc., 33 (1972)), 211-212 · Zbl 0232.55032
[10] McClure, J. E., On the groups \(JO_G\)(X).I, Math. Z., 183, 229-253 (1983) · Zbl 0521.55011
[11] Namboodiri, U., Equivariant vector fields on spheres, Trans. Amer. Math. Soc., 278, 431-460 (1983) · Zbl 0518.57013
[12] Obiedat, M., A note on the localization of J-groups, Hiroshima Math. J., 29, 299-312 (1999) · Zbl 0932.55016
[13] Obiedat, M., Localization techniques in computation of equivariant \(J\)-groups and equivariant cross sections of Stiefel manifolds, (Thesis (1998), Middle East Technical University)
[14] Önder, T., An alternative computation of 2-primary factors of J-orders of Hopf line bundles, Bull.Tech.Univ. Istanbul, 47, 4, 265-274 (1994) · Zbl 0864.55001
[15] Önder, T., Equivariant frame fields on spheres with complementary equivariant complex structures, Manuscripta Math., 86, 393-407 (1995) · Zbl 0839.57020
[16] Önder, T., Equivariant cross section of complex Stiefel Manifolds, Topology and its Applications, 109, 107-125 (2001) · Zbl 0976.57032
[17] Mahammed, N.; Piccinini, R.; Suter, U., Some Applications of Topological K-Theory (1980), North Holland Mathematical Studies: North Holland Mathematical Studies New York-Amsterdam-Oxford · Zbl 0446.55001
[18] Segal, G., Equivariant K-theory, Inst. Hautes Etudé Sci. Publ. Math., 34, 129-151 (1968) · Zbl 0199.26202
[19] Wu, Z. D., The J-groups of complex projective spaces \(CP^n(n = 6,7,8,9)\), Acta Mathematica Sinica, 24, no. 6, 837-843 (1981) · Zbl 0531.55011
[20] Wu, Z. D.; Liu, Z. Z., The J-groups of complex projective spaces \(CP^n(n = 10,11)\) and thequaternionic spaces \(HP^q(q = 3,4,5)\), Acta Mathematica Sinica, 25, no. 2, 167-188 (1982) · Zbl 0507.55012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.