×

Some two-step and three-step nilpotent Lie groups with small automorphism groups. (English) Zbl 1023.22006

Let \(G\) be a connected Lie group and \(\operatorname{Aut}(G)\) the group of all automorphisms of \(G\). The paper studies the action of \(\operatorname{Aut}(G)\) on \(G\), especially topological properties of its orbits. For instance, when does the action of \(\operatorname{Aut}(G)\) on \(G\) have a dense orbit? If this holds, then \(G\) is nilpotent [cf. the author’s article in: Ergodic theory and harmonic analysis (Mumbai, 1999), Sankhya, Ser. A 62, 360-366 (2000; Zbl 0986.22003)]. However, it does not hold for all nilpotent Lie groups. When \(G\) is a vector space, \(\operatorname{Aut}(G)\) is its general linear group and the action has an open dense orbit, namely the complement of the zero.
The author here constructs, making use of a representation of \(\text{PSL}(2,\mathbb{R})\), an example of a two-step simply connected nilpotent Lie group \(G\) for which the action of \(\operatorname{Aut}(G)\) has no dense orbit. This enables him to obtain new examples of compact nilmanifolds which do not admit Anosov automorphisms.
He also gives examples of three-step simply connected nilpotent Lie groups \(G\) such that \(\operatorname{Aut}(G)\) is nilpotent and acts on the Lie algebra of \(G\) by unipotent transformations, what implies in particular that all orbits of the action are closed.

MSC:

22D45 Automorphism groups of locally compact groups
22E25 Nilpotent and solvable Lie groups
22D40 Ergodic theory on groups
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)

Citations:

Zbl 0986.22003

References:

[1] Louis Auslander and John Scheuneman, On certain automorphisms of nilpotent Lie groups, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 9 – 15. · Zbl 0223.22014
[2] Andrzej Białynicki-Birula and Maxwell Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200 – 203. · Zbl 0107.14602
[3] S. G. Dani, Nilmanifolds with Anosov automorphism, J. London Math. Soc. (2) 18 (1978), no. 3, 553 – 559. · Zbl 0399.58006 · doi:10.1112/jlms/s2-18.3.553
[4] S. G. Dani, On automorphism groups acting ergodically on connected locally compact groups, Sankhyā Ser. A 62 (2000), no. 3, 360 – 366. Ergodic theory and harmonic analysis (Mumbai, 1999). · Zbl 0986.22003
[5] S. G. Dani, On ergodic \Bbb Z^{\?}-actions on Lie groups by automorphisms, Israel J. Math. 126 (2001), 327 – 344. · Zbl 0992.22004 · doi:10.1007/BF02784160
[6] S. G. Dani and M. McCrudden, A criterion for exponentiality in certain Lie groups, J. Algebra 238 (2001), no. 1, 82 – 98. · Zbl 0989.22015 · doi:10.1006/jabr.2000.8642
[7] Karel Dekimpe, Hyperbolic automorphisms and Anosov diffeomorphisms on nilmanifolds, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2859 – 2877. · Zbl 0990.37022
[8] Karel Dekimpe and Wim Malfait, A special class of nilmanifolds admitting an Anosov diffeomorphism, Proc. Amer. Math. Soc. 128 (2000), no. 7, 2171 – 2179. · Zbl 0947.37017
[9] J. Dixmier and W.G. Lister, Derivations of nilpotent Lie algebras, Proc. Amer. Math. Soc. 8 (1957), 155-158. · Zbl 0079.04802
[10] Joan L. Dyer, A nilpotent Lie algebra with nilpotent automorphism group, Bull. Amer. Math. Soc. 76 (1970), 52 – 56. · Zbl 0198.05402
[11] Gerhard P. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, vol. 75, Springer-Verlag, New York-Berlin, 1981. · Zbl 0589.20025
[12] Wim Malfait, Anosov diffeomorphisms on nilmanifolds of dimension at most six, Geom. Dedicata 79 (2000), no. 3, 291 – 298. · Zbl 1047.37023 · doi:10.1023/A:1005264730096
[13] Дискретные подгруппы групп Ли., Издат. ”Мир”, Мосцощ, 1977 (Руссиан). Транслатед фром тхе Енглиш бы О. В. Šварцман; Едитед бы Ѐ. Б. Винберг; Щитх а супплемент ”Аритхметициты оф ирредуцибле латтицес ин семисимпле гроупс оф ранк греатер тхан 1” бы Г. А. Маргулис.
[14] Jean-Pierre Serre, Complex semisimple Lie algebras, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2001. Translated from the French by G. A. Jones; Reprint of the 1987 edition. · Zbl 1058.17005
[15] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. · Zbl 0955.22500
[16] Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. · Zbl 0475.28009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.