×

On the cohomology of Seifert and graph manifolds. (English) Zbl 1022.57013

The authors describe a cell-decomposition of a general Seifert manifold \(M^3= SF(g,b,r:(\alpha_1,\beta_1),\dots,(\alpha_r,\beta_r))\). They construct chain and cochain complexes from the resulting CW-complex, and calculate the cohomology ring of \(M^3\).
A corresponding calculation is made for a graph manifold which is constructed, roughly speaking, from the union of a finite number of Seifert manifolds which intersect one another along their boundary tori.

MSC:

57N65 Algebraic topology of manifolds
55R99 Fiber spaces and bundles in algebraic topology
57M50 General geometric structures on low-dimensional manifolds
55N99 Homology and cohomology theories in algebraic topology
57N10 Topology of general \(3\)-manifolds (MSC2010)
Full Text: DOI

References:

[1] K. Aaslepp, Der Cohomologiering orientierbarer Seifertscher Faserräume mit orientierbarer Zerlegungsfläche, Diplomarbeit Ruhr-Universität Bochum, 1996; K. Aaslepp, Der Cohomologiering orientierbarer Seifertscher Faserräume mit orientierbarer Zerlegungsfläche, Diplomarbeit Ruhr-Universität Bochum, 1996
[2] Bryden, J.; Hayat-Legrand, C.; Zieschang, H.; Zvengrowski, P., L’anneau de cohomologie d’une variété de Seifert, C. R. Acad. Sci. Paris Sér. I, 324, 323-326 (1997) · Zbl 0890.57022
[3] Bryden, J.; Hayat-Legrand, C.; Zieschang, H.; Zvengrowski, P., The cohomology ring of a class of Seifert manifolds, Topology Appl., 105, 123-156 (2000) · Zbl 0964.57019
[4] Bryden, J.; Zvengrowski, P., The cohomology ring of a class of Seifert manifolds II, Proceedings of the Pacific Institute for the Mathematical Sciences Workshop “Invariants of Three-Manifolds”, July 18-22, 1999, Calgary, Canada. Proceedings of the Pacific Institute for the Mathematical Sciences Workshop “Invariants of Three-Manifolds”, July 18-22, 1999, Calgary, Canada, Topology Appl., 127, 1-2, 213-257 (2003), (this volume) · Zbl 1025.57031
[5] M. Drawe, Der Cohomologiering orientierbarer Seifertscher Faserräume und der aus ihnen durch Selbstverklebungen entstehenden Graphenmannigfaltigkeiten, Diplomarbeit Ruhr-Universität Bochum, 1999; M. Drawe, Der Cohomologiering orientierbarer Seifertscher Faserräume und der aus ihnen durch Selbstverklebungen entstehenden Graphenmannigfaltigkeiten, Diplomarbeit Ruhr-Universität Bochum, 1999
[6] Fomenko, A. T.; Tsishang, Kh., On typical properties of integrable Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat., 52, 378-407 (1988), Engl. transl. in: Math. USSR Izv. 32 (1989) 385-412 · Zbl 0647.58018
[7] Hayat-Legrand, C.; Zieschang, H., On the cup product on Seifert manifolds, Soc. Brasileira Mat. Mat. Contemp., 13, 159-180 (1997) · Zbl 0929.55006
[8] Orlik, P.; Vogt, E.; Zieschang, H., Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology, 6, 49-64 (1967) · Zbl 0147.23503
[9] C.A. Sczesny, Der Cohomologiering orientierbarer Graphenmannigfaltigkeiten, Diplomarbeit Ruhr-Universität Bochum, 1999; C.A. Sczesny, Der Cohomologiering orientierbarer Graphenmannigfaltigkeiten, Diplomarbeit Ruhr-Universität Bochum, 1999
[10] Seifert, H., Topologie dreidimensionaler gefaserter Räume, Acta Math., 60, 147-238 (1933) · JFM 59.1241.02
[11] Shastri, A. R.; Williams, J. G.; Zvengrowski, P., Kinks in general relativity, Internat. J. Theor. Phys., 19, 1, 1-23 (1980) · Zbl 0448.55009
[12] Spanier, E. H., Algebraic Topology (1966), McGraw-Hill: McGraw-Hill New York · Zbl 0145.43303
[13] Waldhausen, F., Eine Klasse von \(3\)-dimensionalen Mannigfaltigkeiten I, II, Invent. Math., 3, 308-333 (1967), 4 (1967), 87-117 · Zbl 0168.44503
[14] H. Zieschang, B. Zimmermann, On the geometry of \(23\); H. Zieschang, B. Zimmermann, On the geometry of \(23\)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.