×

The validity of the multifractal formalism: Results and examples. (English) Zbl 1020.28005

The Hausdorff and packing multifractal spectra of a Borel probability measure \(\mu\) on \({\mathbb{R}}^n\) are, respectively, defined as \[ f(\alpha)=\text{ dim}_H X(\alpha), \quad F(\alpha)=\text{ dim}_P X(\alpha), \quad\alpha\geq 0, \] where \(X(\alpha)\) are the layers of \(\mu\) with local dimension \(\alpha\), i.e.: \[ X(\alpha)=\left\{x: \lim_{r\rightarrow 0}{\log\mu B(x,r)\over \log r}=\alpha\right\}. \] The multifractal formalism – after [T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. I. Shraiman, “Fractal measures and their singularities: the characterization of strange sets”, Physical Review A (3)33, No. 2,1141-1151 (1986; Zbl 1184.37028); erratum: ibid. 34, No. 2, 1601 (1986)] – is said to hold when the functions \(f(\alpha)\) and \(F(\alpha)\) equal the Legendre transforms \(b^{*}(\alpha)\) and \(B^*(\alpha)\) of the so-called \(L^q\)-spectra of \(\mu\), \(b(q)\) and \(B(q)\), which are dimensional indexes defined from the behavior of the \(q\)-th moments of the measure.
In a significant paper, L. Olsen [“A multifractal formalism”, Adv. Math. 116, 82-196 (1995; Zbl 0841.28012)] developed a geometric measure-theoretic formalism to define \(b(q)\) and \(B(q)\) as the dimensional thresholds obtained in the usual way from families of Hausdorff and packing multifractal outer measures \(H_\mu^{q,t}\) and \(P_\mu^{q,t}\). Olsen proved that the upper bounds \(f(\alpha)\leq b^*(\alpha)\) and \(F(\alpha)\leq B^*(\alpha)\) hold for \(\alpha\) in a suitable interval in general. He derived the multifractal formalism under the assumption of the existence of a Gibbs measure at each state \(q\) for \(\mu\), a condition which is satisfied for self-conformal constructions with slight overlapping, but not expected to hold in general.
In the paper under review, the authors establish that the multifractal formalism holds under the condition that \(H_\mu^{q,B(q)}(\text{supp }\mu)>0\) – which is strictly weaker than the Gibbsian hypothesis on \(\mu\). This improves the result by Olsen, since the authors further exhibit a large class of measures satisfying the multifractal formalism while not having a Gibbs measure at any state \(q>0\). They also prove that the sufficient condition above is very close to be necessary for the formalism to hold.
Using the described results, two other related questions on multifractality posed by S. J. Taylor in [J. Fourier Anal. Appl. Spec. Iss., 553-568 (1995; Zbl 0886.28010)] are solved in the paper, namely, the authors prove the existence of non-exact dimensional measures with nontrivial multifractal spectra, and the existence of measures with real analytic spectra \(B(q)\) and with nowhere valid multifractal formalism.

MSC:

28A80 Fractals
28A78 Hausdorff and packing measures

References:

[1] Batakis, A.; Heurteaux, Y., Technical Report (1998)
[2] Ben Nasr, F.; Bhouri, I., Spectre multifractal de mesures boréliennes sur \(R^d\), C.R. Acad. Sci. Paris Sér. I Math., 325, 253-256 (1997) · Zbl 0885.28006
[3] F. Ben Nasr, and, I. Bhouri, Multifractalité des mesures, preprint, 1998.; F. Ben Nasr, and, I. Bhouri, Multifractalité des mesures, preprint, 1998.
[4] Besicovitch, A. S., A general form of the covering principle and relative differentiation of additive functions, Math. Proc. Cambridge Philos. Soc., 42, 1-10 (1946) · Zbl 0063.00353
[5] Brown, G.; Michon, G.; Peyrière, J., On the multifractal analysis of measures, J. Statist. Phys., 66, 775-790 (1992) · Zbl 0892.28006
[6] Cawlay, R.; Maudlin, R. D., Multifractal decomposition of Moran fractals, Adv. Math., 92, 196-236 (1992) · Zbl 0763.58018
[7] Edgar, G. A.; Maudlin, R. D., Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc., 65, 605-628 (1992) · Zbl 0764.28007
[8] Falconer, K., Fractal Geometry. Fractal Geometry, Mathematical Foundations and Applications (1990), Wiley: Wiley New York · Zbl 0689.28003
[9] Falconer, K., Techniques in Fractal Geometry (1997), Wiley: Wiley New York · Zbl 0869.28003
[10] Heurteaux, Y., Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist., 34, 309-338 (1998) · Zbl 0903.28005
[11] Heurteaux, Y., Technical Report (1999)
[12] Ngai, S. M., A dimension result arising from the \(L^q\) spectrum of a measure, Proc. Amer. Math. Soc., 125, 2943-2951 (1997) · Zbl 0886.28006
[13] L. Olsen, A multifractal formalism, Adv. Math.1161995, 82-196; .; L. Olsen, A multifractal formalism, Adv. Math.1161995, 82-196; . · Zbl 0841.28012
[14] Olsen, L., Self-affine multifractal Sierpinski sponges in \(R^d\), Pacific J. Math., 183, 143-199 (1998) · Zbl 0955.28004
[15] Olsen, L., Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures, Math. Scand., 86, 109-129 (2000) · Zbl 0968.28004
[16] Peyrière, J., Multifractal measures, Proceedings of the NATO Adv. Study Inst. Il Ciocco. Proceedings of the NATO Adv. Study Inst. Il Ciocco, NATO ASI Ser. C, 372 (1992), Kluwer Academic: Kluwer Academic Dordrecht, p. 175-186
[17] S. J. Taylor, The fractal analysis of Borel measures in \(R^d\)J. Fourier Anal. Appl.; S. J. Taylor, The fractal analysis of Borel measures in \(R^d\)J. Fourier Anal. Appl. · Zbl 0886.28010
[18] Tricot, C., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91, 57-74 (1982) · Zbl 0483.28010
[19] Tukia, P., Hausdorff dimension and quasisymmetric mappings, Math. Scand., 65, 152-160 (1989) · Zbl 0677.30016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.