×

Sampling sets and sufficient sets for \(A^{-\infty}\). (English) Zbl 1019.30026

The Banach space \(A^{-p}\), \(p>0\), of all the holomorphic functions \(f\) on the unit disc \(D\) such that \(\|f\|_p: =\sup_{z\in D} |f(z)|(1-|z|^2)^p <\infty\). The space \(A^{-\infty}\) is the union of \(A^{-p}\), \(p>0\). The authors’ abstract: We give new characterizations of the subsets \(S\) of the unit disc \({\mathbf D}\) of the complex plane such that the topology of the space \(A^{-\infty}\) of holomorphic functions of polynomial growth on \({\mathbf D}\) coincides with the topology of space of the restrictions of the functions to the set \(S\). These sets are called weakly sufficient sets for \(A^{-\infty}\). Our approach is based on a study of the so-called \((p,q)\)-sampling sets which generalize the \(A^{-p}\)-sampling sets of Seip. A characterization of \((p,q)\)-sampling and weakly sufficient rotation invariant sets is included. It permits us to obtain new examples and to solve an open question of Khôi and Thomas.
Reviewer: T.Nakazi (Sapporo)

MSC:

30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
Full Text: DOI

References:

[1] Abanin, A. V., Certain criteria for weak sufficiency, Mat. Zametki, 40, 757-764 (1985) · Zbl 0625.46030
[2] Bierstedt, K. D., An introduction to locally convex inductive limits, (Functional Analysis and Its Applications (1988), World Scientific: World Scientific Singapore), 35-133 · Zbl 0786.46001
[3] Bierstedt, K. D.; Bonet, J.; Taskinen, J., Associated weights and spaces of holomorphic functions, Studia Math., 127, 137-168 (1998) · Zbl 0934.46027
[4] Bierstedt, K. D.; Meise, R.; Summers, W. H., Köthe sets and Köthe sequence spaces, (Functional Analysis, Holomorphy and Approximation Theory. Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Studies, 71 (1982)), 27-91 · Zbl 0504.46007
[5] Bonet, J.; Domański, P.; Lindström, M., Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull., 42, 139-148 (1999) · Zbl 0939.47020
[6] Bonet, J.; Domański, P.; Lindström, M., Pointwise multiplication operators on weighted Banach spaces of analytic functions, Studia Math., 137, 177-194 (1999) · Zbl 0957.46018
[7] Bruna, J.; Pascuas, D., Interpolation in \(A^{−∞}\), J. London Math. Soc., 40, 452-466 (1989) · Zbl 0652.30026
[8] Domański, P.; Lindström, M., Sets of interpolation and sampling for weighted Banach spaces of holomorphic functions, Ann. Polon. Math., 79, 233-264 (2002) · Zbl 1060.30045
[9] Duren, P.; Schuster, A. P.; Seip, K., Uniform densities of regular sequences in the unit disc, Trans. Amer. Math. Soc., 352, 3971-3980 (2000) · Zbl 0948.30054
[10] Ehrenpreis, L., Fourier Analysis in Several Complex Variables (1970), Wiley-Interscience: Wiley-Interscience New York · Zbl 0195.10401
[11] Hedenmalm, H.; Korenblum, B.; Zhu, K., Theory of Bergman Spaces (2000), Springer: Springer New York · Zbl 0955.32003
[12] Hoffman, K., Banach Spaces of Analytic Functions (1988), Dover: Dover New York · Zbl 0117.34001
[13] Horowitz, C.; Korenblum, B.; Pinchuk, B., Sampling sequences for \(A^{−∞}\), Michigan Math. J., 44, 389-398 (1997) · Zbl 0889.30034
[14] Khôi, L. H.; Thomas, P. J., Weakly sufficient sets for \(A^{−∞}(D)\), Publ. Mat., 42, 435-448 (1998) · Zbl 1140.46311
[15] Korenblum, B., An extension of the Nevanlinna theory, Acta Math., 135, 187-219 (1975) · Zbl 0323.30030
[16] Korobeinik, Yu. F., Inductive and projective topologies. Sufficient sets and representing systems, Math. USSR-Izv., 28, 529-554 (1987) · Zbl 0628.46004
[17] Meise, R.; Vogt, D., Introduction to Functional Analysis (1997), Clarendon: Clarendon Oxford · Zbl 0924.46002
[18] Napalkov, V. V., The strict topology in certain weighted spaces of functions, Math. Notes, 39, 291-296 (1986) · Zbl 0615.46026
[19] Pérez Carreras, P.; Bonet, J., Barrelled Locally Convex Spaces. Barrelled Locally Convex Spaces, North-Holland Math. Studies, 131 (1987) · Zbl 0614.46001
[20] Schneider, D. M., Sufficient sets for some spaces of entire functions, Trans. Amer. Math. Soc., 197, 161-180 (1974) · Zbl 0264.46018
[21] Seip, K., Regular sets of sampling and interpolation for weighted Bergman spaces, Proc. Amer. Math. Soc., 117, 213-220 (1993) · Zbl 0763.30014
[22] Seip, K., On the Korenblum’s density condition for zero sequences of \(A^{−α}\), J. Anal. Math., 67, 307-322 (1995) · Zbl 0845.30014
[23] Seip, K., Beurling type density theorems in the unit disc, Invent. Math., 113, 21-39 (1993) · Zbl 0789.30025
[24] Seip, K., Developments from nonharmonic Fourier series, Proc. ICM 1998, Vol. II. Proc. ICM 1998, Vol. II, Documenta Math. J. DMV, Extra Volume ICM, 713-722 (1998) · Zbl 0968.42019
[25] Taskinen, J., Compact composition operators on general weighted spaces, Houston J. Math., 27, 203-218 (2001) · Zbl 0991.47011
[26] Taylor, B. A., Discrete sufficient sets for some spaces of entire functions, Trans. Amer. Math. Soc., 163, 207-214 (1972) · Zbl 0231.46050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.