×

Symplectic and orthogonal Lie algebra technology for bosonic and fermionic oscillator models of integrable systems. (English) Zbl 1016.81029

To provide tools, especially \(L\)-operators, for use in studies of rational Yang-Baxter algebras and quantum integrable models when the Lie algebras \(so(N)\) or \(sp(2n)\) are the invariance algebras of their \(R\)-matrices, this paper develops a presentation of these Lie algebras convenient for the context, and derives many properties of the matrices of their defining representations and of the ad-invariant tensors that enter their multiplication laws. Metaplectic-type representations of \(sp(2n)\) and \(so(N)\) on bosonic and fermionic Fock spaces respectively are constructed. Concise general expressions for their \(L\)-operators are obtained, and used to derive simple formulas for the \(T\)-operators of the rational RTT algebra of the associated integrable systems, thereby enabling their efficient treatment by means of the algebraic Bethe ansatz.

MSC:

81R12 Groups and algebras in quantum theory and relations with integrable systems
81Q40 Bethe-Salpeter and other integral equations arising in quantum theory
37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures
35Q40 PDEs in connection with quantum mechanics
17B80 Applications of Lie algebras and superalgebras to integrable systems
17B20 Simple, semisimple, reductive (super)algebras

References:

[1] DOI: 10.1143/PTPS.118.35 · doi:10.1143/PTPS.118.35
[2] DOI: 10.1016/S0370-2693(99)01261-7 · Zbl 0987.81031 · doi:10.1016/S0370-2693(99)01261-7
[3] DOI: 10.1007/BF01645755 · Zbl 0152.23204 · doi:10.1007/BF01645755
[4] DOI: 10.1090/S0002-9947-1978-0486325-5 · doi:10.1090/S0002-9947-1978-0486325-5
[5] Fadde’ev L. D., Amsterdam 198 pp 561–
[6] Reshetikhin N. Yu., Zap. Nauchnyk. Sem. LOMI 150 pp 196– (1986)
[7] Reshetikhin N. Yu., Theor. Math. Phys. 63 pp 347– (1985)
[8] DOI: 10.1016/0550-3213(82)90087-6 · doi:10.1016/0550-3213(82)90087-6
[9] DOI: 10.1007/BF01208274 · Zbl 0495.22017 · doi:10.1007/BF01208274
[10] Neková J., Math. 434 pp 115– (2000)
[11] DOI: 10.1007/BF01218560 · Zbl 0498.22019 · doi:10.1007/BF01218560
[12] DOI: 10.1063/1.530897 · Zbl 0854.17007 · doi:10.1063/1.530897
[13] DOI: 10.1016/S0370-2693(97)01145-3 · doi:10.1016/S0370-2693(97)01145-3
[14] DOI: 10.1016/0370-1573(81)90092-2 · doi:10.1016/0370-1573(81)90092-2
[15] DOI: 10.1007/BF01654302 · doi:10.1007/BF01654302
[16] DOI: 10.1016/S0550-3213(97)00609-3 · Zbl 0953.17005 · doi:10.1016/S0550-3213(97)00609-3
[17] DOI: 10.1063/1.533300 · Zbl 0985.17005 · doi:10.1063/1.533300
[18] DOI: 10.1007/s002200050079 · Zbl 0878.17005 · doi:10.1007/s002200050079
[19] DOI: 10.1063/1.523225 · Zbl 0371.17004 · doi:10.1063/1.523225
[20] DOI: 10.1016/0550-3213(81)90262-5 · doi:10.1016/0550-3213(81)90262-5
[21] DOI: 10.1063/1.533389 · Zbl 0976.22016 · doi:10.1063/1.533389
[22] DOI: 10.1023/A:1022818324789 · Zbl 0979.17009 · doi:10.1023/A:1022818324789
[23] DOI: 10.1051/jphys:0197600370100108700 · doi:10.1051/jphys:0197600370100108700
[24] DOI: 10.1063/1.533067 · Zbl 0964.81059 · doi:10.1063/1.533067
[25] DOI: 10.1063/1.531401 · Zbl 0894.22014 · doi:10.1063/1.531401
[26] DOI: 10.1063/1.1704329 · Zbl 0125.40801 · doi:10.1063/1.1704329
[27] Kulish P. P., Zap. Nauchnyk. Sem. LOMI 95 pp 129– (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.