×

Classification of unipotent representations of simple \(p\)-adic groups. II. (English) Zbl 1016.22011

[Part I in Int. Math. Res. Not. 1995, No. 11, 517-589 (1995; Zbl 0872.20041).]
Let \(K\) be a nonarchimedean local field and let \(G(K)\) be the group of \(K\)-rational points of a connected, adjoint simple algebraic group \(G\) defined over \(K\) which becomes split over an unramified extension of \(K\). Denote by \(U(G(K))\) the set of isomorphism classes of unipotent representations of \(G(K)\). Further, let \(H\) be a simply connected almost simple algebraic group over \(C\) of the type dual to that of \(G\) and denote by \(\theta\): \(G \rightarrow G\) the “graph automorphism” of \(H\) associated to the \(K\)-rational structure of \(G\). The author classifies the unipotent representations of \(G(K)\). More precisely, one of the main results of this paper is the construction of a bijection between \(U(G(K))\) and a set of parameters defined in terms of \(H\) and \(\theta\).

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
20G25 Linear algebraic groups over local fields and their integers

Citations:

Zbl 0872.20041

References:

[1] V. G. Kac, Automorphisms of finite order of semisimple Lie algebras, Funkcional. Anal. i Priložen. 3 (1969), no. 3, 94 – 96 (Russian).
[2] David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153 – 215. · Zbl 0613.22004 · doi:10.1007/BF01389157
[3] George Lusztig, Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 145 – 202. · Zbl 0699.22026
[4] George Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599 – 635. · Zbl 0715.22020
[5] George Lusztig, Cuspidal local systems and graded Hecke algebras. II, Representations of groups (Banff, AB, 1994) CMS Conf. Proc., vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 217 – 275. With errata for Part I [Inst. Hautes Études Sci. Publ. Math. No. 67 (1988), 145 – 202; MR0972345 (90e:22029)]. · Zbl 0841.22013
[6] George Lusztig, Classification of unipotent representations of simple \?-adic groups, Internat. Math. Res. Notices 11 (1995), 517 – 589. · Zbl 0872.20041 · doi:10.1155/S1073792895000353
[7] G. Lusztig, Cuspidal local systems and graded Hecke algebras, III, Represent. Theory 6 (2002), 202-242. · Zbl 1031.22007
[8] Mark Reeder, Formal degrees and \?-packets of unipotent discrete series representations of exceptional \?-adic groups, J. Reine Angew. Math. 520 (2000), 37 – 93. With an appendix by Frank Lübeck. · Zbl 0947.20026 · doi:10.1515/crll.2000.023
[9] Graeme Segal, The representation ring of a compact Lie group, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 113 – 128. · Zbl 0209.06203
[10] Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. · Zbl 0164.02902
[11] J. Tits, Reductive groups over local fields, Automorphic forms, representations and \?-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29 – 69.
[12] J.-L. Waldspurger, Représentations de réduction unipotente pour \(SO(2n+1)\): quelques conséquences d’un article de Lusztig, 2001, preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.