×

Loss network representation of Peierls contours. (English) Zbl 1015.60090

The authors develop a probabilistic approach to the study of the equilibrium measure of systems with exclusions – such as hard-core gases, contours, polymers or animals – in the law-density or extreme-temperature regime. This regime has traditionally been studied via cluster-expansion methods, which relied either on sophisticated combinatorial estimations [V. A. Malyshev, Russ. Math. Surv. 35, 1-62 (1980); E. Seiler, “Gauge theories as a problem of constructive quantum field theory and statistical mechanics” (Berlin, 1982); D. C. Brydges, in: Critical phenomena, random systems, gauge theories, Pt. 1, 129-183 (1986; Zbl 0659.60136)] or an asute inductive hypotheses plus complex analysis [B. Kotecký and D. Preiss, Commun. Math. Phys. 103, 491-498 (1986; Zbl 0593.05006); R. Dobrushin, in: Topics in statistical and theoretical physics. Transl., Ser. 2, Am. Math. Soc. 177(32), 59-81 (1996; Zbl 0873.60074)]. The authors realize the equilibrium measure as the invariant measure of a loss network process whose existence is ensured by a subcriticality condition of a dominant branching process. In this regime the approach yields, besides existence and uniqueness of the measure, properties such as exponential space convergence and mixing, and a central limit theorem. The loss network converges exponentially fast to the equilibrium measure without metastable traps. This convergence is faster at low temperature, where it leads to the proof of an asymptotic Poisson distribution of contours.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics

References:

[1] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York. · Zbl 0259.60002
[2] Baddeley, A. J. and van Lieshout, M. N. M. (1995). Area-interaction point processes. Ann. Inst. Statist. Math. 47 601-619. · Zbl 0848.60051 · doi:10.1007/BF01856536
[3] Bolthausen, E. (1982). On the central limit theorem for stationary mixing random fields. Ann. Probab. 10 1047-1050. · Zbl 0496.60020 · doi:10.1214/aop/1176993726
[4] Borgs, C. and Imbrie, J.(1989). A unified approach to phase diagrams in field theory and statistical mechanics. Comm. Math. Phys. 123 305-328. · Zbl 0668.60092 · doi:10.1007/BF01238860
[5] Bricmont, J. and Kupiainen, A. (1996). High temperature expansions and dynamical systems. Comm. Math. Phys. 178 703-732. · Zbl 0859.58037 · doi:10.1007/BF02108821
[6] Bricmont, J. and Kupiainen, A. (1997). Infinite-dimensional SRB measures: lattice dynamics. Phys. D 103 18-33. · Zbl 1194.82061 · doi:10.1016/S0167-2789(96)00250-3
[7] Brockmeyer, E., Halstrøm, H. L. and Jensen, A. (1948). The life and works of A. K. Erlang. Trans. Danish Acad. Tech. Sci.; second, unaltered, edition in Acta Polytech. Scand. 287 · Zbl 0089.34302
[8] .
[9] Brydges, D. C. (1984). A short cluster in cluster expansions. In Critical Phenomena, Random Systems, Gauge Theories (K. Osterwalder and R. Stora, eds.) 129-183. North-Holland, Amsterdam. · Zbl 0659.60136
[10] Dobrushin, R. L. (1965). Existence of a phase transition in the two-dimensional and threedimensional Ising models. Theory Probab. Appl. 10 193-213. [Russian original: Soviet Phys. Dok. 10 111-113.] Dobrushin, R. L. (1996a). Estimates of semiinvariants for the Ising model at low temperatures. Topics in Statistics and Theoretical Physics. Amer. Math. Soc. Transl. Ser. 2 177 59-81. Dobrushin, R. L. (1996b). Perturbation methods of the theory of Gibbsian fields. École d’ Été de Probabilités de Saint-Flour XXIV. Lecture Notes in Math. 1648 1-66. Springer, New York.
[11] von Dreifus, H., Klein, A. and Perez, J. F. (1995). Taming Griffiths’ singularities: infinite differentiability of quenched correlation functions. Comm. Math. Phys. 170 21-39. · Zbl 0820.60086 · doi:10.1007/BF02099437
[12] Durrett, R. (1995). Ten lectures on particle systems. Lectures on Probability Theory 97-201. Springer, Berlin. · Zbl 0840.60088
[13] Fernández, R., Ferrari, P. A. and Garcia, N. (1998). Measures on contour, polymer or animal models: a probabilistic approach. Markov Process. Related Fields 4 479-497. · Zbl 0922.60090
[14] Fernández, R., Ferrari, P. A. and Garcia, N. (1999). Perfect simulation of fixed-routing loss networks: application to the low-temperature Ising model. Unpublished manuscript.
[15] Ferrari, P. A. and Garcia, N. (1998). One-dimensional loss networks and conditioned M/G/ queues. J. Appl. Probab. 35 963-975. · Zbl 0934.60014 · doi:10.1239/jap/1032438391
[16] Griffiths, R. B. (1964). Peierls’ proof of spontaneous magnetization in a two dimensional Ising ferromagnet. Phys. Rev. A 136 437-439. · Zbl 0129.23205
[17] Hall, P. (1985). On continuum percolation. Ann. Probab. 13 1250-1266. · Zbl 0588.60096 · doi:10.1214/aop/1176992809
[18] Hall, P. (1988). Introduction to the Theory of Coverage Processes. Wiley, New York. · Zbl 0659.60024
[19] Harris, T. E. (1963). The theory of branching processes. Grundlehren Math. Wiss. 119. · Zbl 0117.13002
[20] Harris, T. E. (1972). Nearest-neighbor Markov interaction processes on multidimensional lattices. Adv. in Math. 9 66-89. · Zbl 0267.60107 · doi:10.1016/0001-8708(72)90030-8
[21] Kelly, F. P. (1991). Loss networks. Ann. Appl. Probab. 1 319-378. · Zbl 0743.60099 · doi:10.1214/aoap/1177005872
[22] Kendall, W. S. (1997). On some weighted Boolean models. In Proceedings of the International Symposium on Advances in Theory and Applications of Random Sets 105-120. World Scientific, River Edge, NJ.
[23] Kendall, W. S. (1998). Perfect simulation for the area-interaction point process. In Probability Towards 2000 218-234. Springer, New York. · Zbl 1045.60503
[24] Kotecký, R. and Preiss, D. (1986). Cluster expansion for abstract polymer models. Comm. Math. Phys. 103 491-498. · Zbl 0593.05006 · doi:10.1007/BF01211762
[25] Liggett, T. M. (1985). Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[26] Liggett, T. M. (1995). Improved upper bounds for the contact process critical value. Ann. Probab. 23 697-723. · Zbl 0832.60093 · doi:10.1214/aop/1176988285
[27] Malyshev, V. A. (1980). Cluster expansions in lattice models of statistical physics and quantum theory of fields. Russian Math. Surveys 35 1-62.
[28] Neveu, J. (1977). Processus ponctuels. In École d’ Été de Probabilités de Saint-Flour VI. Lecture Notes in Math. 598. 249-445. Springer, Berlin. · Zbl 0439.60044
[29] Peierls, R. (1936). On Ising’s model of ferromagnetism. Math. Proc. Cambridge Philos. Soc. 32 477-481. · Zbl 0014.33604
[30] Seiler, E. (1982). Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics. Lecture Notes in Phys. 159. Springer, Berlin.
[31] Zahradník, E. (1984). An alternate version of Pirogov-Sinai theory. Comm. Math. Phys. 93 559-5581. · doi:10.1007/BF01212295
[32] IMECC, UNICAMP Caixa Postal 6065 13081-970 Campinas SP Brazil E-mail: nancy@ime.unicamp.br
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.