×

Locally primitive Cayley graphs of finite simple groups. (English) Zbl 1015.05034

X. G. Fang and C. E. Praeger [J. Algebra 205, 37-52 (1998; Zbl 0913.05051)] and X. G. Fang, G. Havas, C. E. Praeger [J. Algebra 222, 271-283 (1999; Zbl 0980.05032)] started to investigate the finite connected nonbipartite graphs \(\Gamma\) admitting an almost simple group \(G\) of automorphisms such that \(G\) is transitive on the arcs of \(\Gamma\), \(G\) is locally primitive on \(\Gamma\), and \(G\) is quasiprimitive on the vertices of \(\Gamma\). The aim was to deduce, from these properties of the group \(G\), certain properties of the full automorphism group \(\operatorname{Aut}(\Gamma)\) of \(\Gamma\). In these papers it has been assumed that the simple socle \(L\) of \(G\) does not act semiregulary on the vertices of \(\Gamma\). In the paper under review the authors assume that \(L\) is semiregular, hence regular, on the vertices of \(\Gamma\), where \(G, L\) and \(\Gamma\) are as above. They show that \(L\) is a simple group of Lie type and that \(\operatorname{Aut}(\Gamma)\) is a subgroup of \(\operatorname{Aut}(L)\).

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
20D06 Simple groups: alternating groups and groups of Lie type
05C75 Structural characterization of families of graphs
Full Text: DOI

References:

[1] Fang, X. G.; Praeger, C. E., On graphs admitting are-transitive actions of almost simple groups, J. Algebra, 205, 1, 37-37 (1998) · Zbl 0913.05051 · doi:10.1006/jabr.1997.7383
[2] Fang, X. G.; Havas, G.; Praeger, C. E., On the automorphism groups of quasiprimitive almost simple graphs, J. Algebra, 222, 2, 271-271 (1999) · Zbl 0980.05032 · doi:10.1006/jabr.1999.8020
[3] Biggs, N., Algebraic greph theory (1993), London: Cambridge University Press, London
[4] Godsil, C. D., On the full automorphism group of a graph, Combinatorica, 1, 2, 243-243 (1981) · Zbl 0489.05028 · doi:10.1007/BF02579330
[5] Praeger, C. E., Imprimitive symmetric graphs, Ars Combinatoria, 19A, 1, 149-149 (1985) · Zbl 0575.05047
[6] Liebeck, M. W., On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. (3), 50, 2, 426-426 (1985) · Zbl 0591.20021 · doi:10.1112/plms/s3-50.3.426
[7] Liebeck, M. W.; Saxl, J., On the orders of maximal subgroups of the finite exceptional groups of Lie type, J. London Math. Soc., 55, 2, 299-299 (1987) · Zbl 0627.20026
[8] Cooperstein, B. N., Minimal degree for a permutation representation of a classical group, Israel J. Math., 30, 2, 213-213 (1978) · Zbl 0383.20027 · doi:10.1007/BF02761072
[9] Conway, J. H.; Curtis, R. T.; Norton, S. P., Atlas of finite groups (1985), Oxford: Clarendon Press, Oxford · Zbl 0568.20001
[10] Gorenstein, D.; Lyons, R., The local structure of finite groups of characteristic 2 type, Memoirs Amer. Math soc., 42, 276, 1-1 (1983) · Zbl 0519.20014
[11] Zsigmondy, K., Zur Theorie der Potenzreste, Monatsh Math. Phys., 3, 2, 265-265 (1892) · JFM 24.0176.02 · doi:10.1007/BF01692444
[12] Huppert, B.; Blackburn, N., Finite Groups II (1982), Berlin: Springer-Verlag, Berlin · Zbl 0477.20001
[13] Liebeck, M. W.; Praeger, C. E.; Saxl, J., The maximal factorisations of the almost simple goups and their automorphism groups, Memoirs Amer. Math. Soc., 86, 432, 1-1 (1990) · Zbl 0703.20021
[14] Praeger, C. E., On the O’Nan-Scott Theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc., 47, 1, 227-227 (1993) · doi:10.1112/jlms/s2-47.2.227
[15] Praeger, C. E.; Hahn, G.; Sabidussi, G., Finite transitive permutation groups and finite vertex-transitive graphs, Graph Symmetry: algebraic methods and applications, 277-318 (1997), Dordrecht: Kluwer, Dordrecht · Zbl 0885.05072
[16] Kimmerle, W.; Lyons, R.; Sandling, R., Composition factors from the group ring and Artin’s theorem on orders of simple groups, Proc. London Math. Soc., 60, 1, 89-89 (1990) · Zbl 0668.20009 · doi:10.1112/plms/s3-60.1.89
[17] Kleidman, P. B., The maximal subgroups of the finite 8-dimensional orthogonal groupsPΩ_8^+(q) and of their automorphism groups, J. Algebra, 110, 1, 173-173 (1987) · Zbl 0623.20031 · doi:10.1016/0021-8693(87)90042-1
[18] Hall, M., The Theory of Groups (1959), New York: MacMillan, New York · Zbl 0084.02202
[19] Wielandt, H., Finite Permutation Groups (1964), New York: Academic Press, New York · Zbl 0138.02501
[20] Weiss, R., An application of p-factorization methods to symmetric graphs, Math. Roc. Camb. Phil. Soc., 85, 1, 43-43 (1979) · Zbl 0392.20002 · doi:10.1017/S030500410005547X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.