×

Integration by parts formulas involving generalized Fourier-Feynman transforms on function space. (English) Zbl 1014.60077

Summary: In an upcoming paper, S. J. Chang and D. L. Skoug used a generalized Brownian motion process to define a generalized analytic Feynman integral and a generalized analytic Fourier-Feynman transform. In this paper we establish several integration by parts formulas involving generalized Feynman integrals, generalized Fourier-Feynman transforms, and the first variation of functionals of the form \(F(x)=f(\langle{\alpha_{1} , x}\rangle, \dots , \langle{\alpha_{n} , x}\rangle)\) where \(\langle{\alpha ,x}\rangle\) denotes the Paley-Wiener-Zygmund stochastic integral \(\int_{0}^{T} \alpha(t) dx(t)\).

MSC:

60J65 Brownian motion
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)
Full Text: DOI

References:

[1] R. H. Cameron and D. A. Storvick, An \?\(_{2}\) analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), no. 1, 1 – 30. · Zbl 0382.42008
[2] R. H. Cameron and D. A. Storvick, Feynman integral of variations of functionals, Gaussian random fields (Nagoya, 1990) Ser. Probab. Statist., vol. 1, World Sci. Publ., River Edge, NJ, 1991, pp. 144 – 157. · Zbl 0820.46045
[3] K. S. Chang, B. S. Kim, and I. Yoo, Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space, Integral Transform. Spec. Funct. 10 (2000), no. 3-4, 179 – 200. Analytical methods of analysis and differential equations (Minsk, 1999). · Zbl 0973.28011 · doi:10.1080/10652460008819285
[4] S. J. Chang and D. L. Skoug, The effect of drift on the Fourier-Feynman transform, the convolution product and the first variation, Panamerican Math. J. 10 (2000), 25-38. · Zbl 0976.28008
[5] -, Generalized Fourier-Feynman transforms and a first variation on function space, to appear in Integral Transforms and Special Functions.
[6] Timothy Huffman, Chull Park, and David Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), no. 2, 661 – 673. · Zbl 0880.28011
[7] Timothy Huffman, Chull Park, and David Skoug, Generalized transforms and convolutions, Internat. J. Math. Math. Sci. 20 (1997), no. 1, 19 – 32. · Zbl 0982.28011 · doi:10.1155/S0161171297000045
[8] G. W. Johnson and D. L. Skoug, An \?_{\?} analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), no. 1, 103 – 127. · Zbl 0409.28007
[9] G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), no. 1, 157 – 176. · Zbl 0387.60070
[10] Edward Nelson, Dynamical theories of Brownian motion, Princeton University Press, Princeton, N.J., 1967. · Zbl 0165.58502
[11] Chull Park and David Skoug, Integration by parts formulas involving analytic Feynman integrals, PanAmer. Math. J. 8 (1998), no. 4, 1 – 11. · Zbl 0958.46042
[12] H. L. Royden, Real analysis, 3rd ed., Macmillan Publishing Company, New York, 1988. · Zbl 0704.26006
[13] J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker,#Inc., New York, 1973. Pure and Applied Mathematics, Vol. 13. · Zbl 0277.60018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.