×

Factorization of singular integral operators with a Carleman shift and spectral problems. (English) Zbl 1009.47034

Authors’ abstract: We study singular integral operators with a linear fractional Carleman shift preserving the orientation on the unit circle. The main goal is to characterize the spectrum of some of these operators. To this end, a special factorization of the operator is derived with the help of a factorization of a matrix function in a suitable algebra. After developing methods which permit us to obtain a factorization of a matrix function for some classes of interest, the spectral analysis of some types of singular integral operators with a Carleman shift is done.

MSC:

47G10 Integral operators
47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
47A10 Spectrum, resolvent

References:

[1] M.C. Câmara, Factorization in a Banach algebra and the Gelfand transform , Math. Nachr. 176 (1995), 17-37. · Zbl 0839.47013 · doi:10.1002/mana.19951760103
[2] M.C. Câmara and A.F. dos Santos, A nonlinear approach to generalized factorization of matrix functions , J. Math. Anal. Appl. 102 (1998), 21-37. · Zbl 0904.47010
[3] M.C. Câmara, A.F. dos Santos and M.A. Bastos, Generalized factorization for Daniele-Khrapkov matrix functions - partial indices , J. Math. Anal. Appl. 190 (1995), 142-164. · Zbl 0824.45004 · doi:10.1006/jmaa.1995.1068
[4] ——–, Generalized factorization for Daniele-Khrapkov matrix functions - explicit formulas , J. Math. Anal. Appl. 190 (1995), 295-328. · Zbl 0824.45005 · doi:10.1006/jmaa.1995.1079
[5] K. Clancey and I. Gohberg, Factorization of matrix functions and singular integral operators , Oper. Theory Adv. Appl., vol. 3, Birkhauser, New York, 1981. · Zbl 0474.47023
[6] I.C. Gohberg and I.A. Fel’dman, Convolution equations and projection methods for their solution , Amer. Math. Soc., Providence, RI, 1974. · Zbl 0278.45008
[7] V.G. Kravchenko, A.B. Lebre and G.S. Litvinchuk, Spectrum problems for singular integral operators with Carleman shift , Math. Nachr. 226 (2001), 129-151. · Zbl 0994.47047 · doi:10.1002/1522-2616(200106)226:1<129::AID-MANA129>3.0.CO;2-R
[8] V.G. Kravchenko and G.S. Litvinchuk, Introduction to the theory of singular integral operators with shift , Math. Appl., vol. 289, Kluwer Acad. Publ., Dordrecht, 1994. · Zbl 0811.47049
[9] V.G. Kravchenko and A. Shaev, The theory of solvability of singular integral equations with a linear fractional Carleman shift , Dokl. Akad. Nauk SSSR 316 (1991), 288-292; Soviet Math. Dokl. 43 (1991), 73-77 (in English). · Zbl 0778.45001
[10] N.Ya. Krupnik, Banach algebras with symbol and singular integral operators , Oper. Theory Adv. Appl., vol. 26, Birkhauser, New York, 1987. · Zbl 0641.47031
[11] A.B. Lebre, Factorization in the Wiener algebra of a class of \(2\times2\) matrix functions , Integral Equations Operator Theory 12 (1989), 408-423. · Zbl 0683.47012 · doi:10.1007/BF01235740
[12] A.B. Lebre and A.F. dos Santos, Generalized factorization for a class of non-rational \(2\times2\) matrix functions , Integral Equations Operator Theory 13 (1990), 671-700. · Zbl 0712.15019 · doi:10.1007/BF01732318
[13] G.S. Litvinchuk, Boundary value problems and singular integral equations with shift , Nauka, Moscow, 1977 (in Russian). · Zbl 0462.30029
[14] G.S. Litvinchuk and I.M. Spitkovskii, Factorization of measurable matrix functions , Oper. Theory Adv. Appl., vol. 25, Birkhauser, New York, 1987.
[15] E. Meister and F.-O. Speck, Weiner-Hopf factorization of certain non-rational matrix functions in mathematical physics , Oper. Theory Adv. Appl., vol. 41, Birkhauser, New York, 1989. · Zbl 0679.45001
[16] S. Prössdorf, Some classes of singular equations , North-Holland Math. Library, vol. 17, North-Holland, Amsterdam, 1978.
[17] S. Prössdorf and F.-O. Speck, A factorization procedure for \(2\times2\) matrix functions on the circle with two radially independent entries , Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 119-138. · Zbl 0714.47013 · doi:10.1017/S0308210500024616
[18] F.S. Teixeira, Generalized factorization for a class of symbols in \([PC(\dot\r)]^2\times2\) , Appl. Anal. 36 (1990), 95-117. · Zbl 0668.45002 · doi:10.1080/00036819008839924
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.