×

Finite deformation plasticity based on the additive split of the rate of deformation and hyperelasticity. (English) Zbl 1007.74023

Summary: We present finite deformation plasticity formulation based on additive split of rate of deformation and hyperelasticity. This approach is valid for finite elastic and plastic strains, while rendering the choice and numerical integration of objective stress rates superfluous as the results are automatically objective. For small elastic strains, our method reduces to classical hypoelastic-corotational formulation provided that Dienes objective stress rate is employed, while in the absence of inelastic deformation it coincides with hyperelastic formulation. The validity of the model is examined on four test problems, and numerical results are found to be in good agreement with either exact solutions or experimental data.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)

Software:

ABAQUS
Full Text: DOI

References:

[1] ABAQUS Theory Manual, Version 5.4, Hibbit, Karlson and Sorensen, 1994; ABAQUS Theory Manual, Version 5.4, Hibbit, Karlson and Sorensen, 1994
[2] S.N. Atluri, An endochronic approach and other topics in small and finite deformation computational elasto-plasticity, in: P.C. Bergan, K.J. Bathe, W. Wunderlich (Eds.), Finite Element Methods for Nonlinear Problems, Europe-US Symposium, Trondheim, Norway, 1985; Springer, Berlin, 1986; S.N. Atluri, An endochronic approach and other topics in small and finite deformation computational elasto-plasticity, in: P.C. Bergan, K.J. Bathe, W. Wunderlich (Eds.), Finite Element Methods for Nonlinear Problems, Europe-US Symposium, Trondheim, Norway, 1985; Springer, Berlin, 1986 · Zbl 0614.73046
[3] Belytschko, T., An overview of semidiscretization and time integration procedures, (Belyschko, T.; Hughes, T. J.R., Computational Methods for Transient Analysis (1983), Elsevier: Elsevier Amsterdam), 1-95 · Zbl 0542.73106
[4] Belytschko, T.; Hsieh, B. J., Nonlinear transient finite element analysis with convected coordinates, Int. J. Numer. Meth. Engrg., 7, 255-271 (1973) · Zbl 0265.73062
[5] Dienes, J. K., On the analysis of rotation and stress rate in deforming bodies, Acta Mech., 32, 217-232 (1979) · Zbl 0414.73005
[6] Durban, D., Large strain solution for pressurized elasto-plastic tubes, J. Appl. Mech., 46, 7-12 (1979) · Zbl 0408.73038
[7] Eve, R. A.; Reddy, B. D., The variational formulation and solution of problems of finite-strain elastoplasticity based on the use of a dissipation function, Int. J. Numer. Meth. Engrg., 37, 1673-1695 (1994) · Zbl 0805.73079
[8] Eve, R. A.; Reddy, B. D.; Rockafellar, R. T., An internal variable theory of elastoplasticity based on the maximum plastic work inequality, Quart. Appl. Math., 48, 59-83 (1990) · Zbl 0693.73008
[9] Fish, J.; Shek, K. L., Computational aspects of incrementally objective algorithms for large deformation plasticity, Int. J. Numer. Meth. Engng., 44, 839-851 (1999) · Zbl 0956.74079
[10] Green, A. E.; Naghdi, P. M., a general theory of an elasto-plastic continuum, Arch. Rat. Mech. Anal., 18, 251-281 (1965) · Zbl 0133.17701
[11] Green, A. E.; Naghdi, P. M., Some remarks on elastic-plastic deformation at finite strain, Int. J. Engrg. Sci., 9, 1219-1229 (1971) · Zbl 0226.73022
[12] R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950, p. 23; R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950, p. 23 · Zbl 0041.10802
[13] Howard, J. V.; Smith, S. L., Recent developments in tensile testing, Proc. Roy. Soc. London A, 107, 113-125 (1925)
[14] Hughes, T. J.R., Generalization of selective integration procedures to anisotropic and nonlinear media, Int. J. Numer. Meth. Engrg., 15, 1413-1418 (1980) · Zbl 0437.73053
[15] Hughes, T. J.R., Numerical implementation of constitutive models: Rate-independent deviatoric plasticity, (Nemat-Nasser, S.; Asaro, R. J.; Hegemier, G. A., Theoretical Foundation for Large Scale Computations for Nonlinear Material Behavior (1983), Martinus Nijhoff: Martinus Nijhoff Dordrecht)
[16] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[17] Hughes, T. J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis, Int. J. Numer. Meth. Engrg., 15, 1862-1867 (1980) · Zbl 0463.73081
[18] G.C. Johnson, D.J. Bammann, A discussion of stress rates in finite deformation problems, Sandia Rept., SAND82-8821, 1982; G.C. Johnson, D.J. Bammann, A discussion of stress rates in finite deformation problems, Sandia Rept., SAND82-8821, 1982
[19] Kim, S. J.; Oden, J. T., Finite element analysis of a class of problems in finite elastoplasticity based on the thermodynamic theory of materials of type N, Comput. Meth. Appl. Mech. Engrg., 53, 277-302 (1985) · Zbl 0552.73066
[20] Lee, E. H., Elastic-plastic deformations at finite strains, J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603
[21] Lee, E. H., Some comments on elastic-plastic analysis, Int. J. Solids Struct., 17, 859-872 (1981) · Zbl 0474.73034
[22] Majors, P.; Krempl, E., Comments on induced anisotropy, the Swift, effect and finite deformation inelasticity, Mech. Res. Commun., 21, 465-472 (1994)
[23] Moran, B.; Ortiz, M.; Shih, C. F., Formulation of implicit finite element methods for multiplicative finite deformation plasticity, Int. J. Numer. Meth. Engrg., 29, 483-514 (1990) · Zbl 0724.73221
[24] Nagtegaal, L. C.; De Jong, J. E., Some computational aspects of elastic-plastic large strain analysis, Int. J. Numer. Meth. Engrg., 17, 15-41 (1981) · Zbl 0463.73080
[25] Nemat-Nasser, S., Decomposition of strain measures and their rates in finite deformation elastoplasticity, Int. J. Solids Struct., 15, 155-166 (1979) · Zbl 0391.73033
[26] Nemat-Nasser, S., On finite deformation elasto-plasticity, Int. J. Solids Struct., 18, 857-872 (1982) · Zbl 0508.73030
[27] Rashid, M. M., Incremental kinematics for finite element applications, Int. J. Numer. Meth. Engrg., 36, 3937-3956 (1993) · Zbl 0788.73073
[28] Simo, J. C., A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: Computational aspects, Comput. Meth. Appl. Mech. Engrg., 68, 1-31 (1988) · Zbl 0644.73043
[29] Simo, J. C.; Ortiz, M., A unified approach to finite deformation elasto-plastic analysis based on the use of hyperelastic constitutive tensor, Comput. Meth. Appl. Mech. Engrg., 49, 221-245 (1985) · Zbl 0566.73035
[30] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate-independent elastoplasticity, Comput. Meth. Appl. Mech. Engrg., 48, 108-118 (1985) · Zbl 0535.73025
[31] Skachenko, A. V.; Sporykhin, A. N., On the additivity of tensors of strains and displacements for finite elastoplastic deformations, PMM, 41, 1145-1146 (1977)
[32] Swift, H., Length changes in metals under torsional overstrain, Engineering, 163, 253 (1947)
[33] Zielger, H., A modification of Prager’s hardening rule, Quart. Appl. Math., 17, 55-65 (1959) · Zbl 0086.18704
[34] Cuitino, A. M.; Ortiz, M., A material-independent method for extending stress update algorithms from small-strain plasticity to finite plasticity with multiplicative kinematics, Engrg. Comp., 9, 437-451 (1992)
[35] Eterovich, A. L.; Bathe, K. J., A hyperelastic based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using logarithmic stresses and strain measures, Int. J. Numer. Meth. Engrg., 30, 1099-1115 (1990) · Zbl 0714.73035
[36] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Meth. Appl. Mech. Engrg., 98, 41-104 (1992) · Zbl 0764.73089
[37] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer: Springer New York · Zbl 0934.74003
[38] Simo, J. C.; Pister, K. S., Remarks on rate constitutive equations for finite deformation problems: computational implications, Comput. Meth. Appl. Mech. Engrg., 46, 201-216 (1984) · Zbl 0525.73042
[39] Webber, G.; Anand, L., Finite deformation constitutive equations and time integration procedure for isotropic, hyperelastic-viscoplastic solids, Comput. Meth. Appl. Mech. Engrg., 79, 173-202 (1990) · Zbl 0731.73031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.