×

Convexity of generalized numerical range associated with a compact Lie group. (English) Zbl 1007.15021

R. Westwick’s convexity theorem for the numerical range [Linear Multilinear Algebra 2, 311-315 (1975; Zbl 0303.47001)] is generalized in the context of compact connected Lie groups. Let \(G\) be a compact Lie group with Lie algebra \(\mathfrak g\) which is equipped with a \(G\)-invariant inner product \(\langle\cdot,\cdot\rangle\). For \(X_1,X_2,Y\in \mathfrak g\), the \(Y\)-numerical range of \((X_1,X_2)\) is defined to be the following subset of \({\mathbb R}^2\): \(W_Y(X_1,X_2)=\{(\langle X_1,\text{Ad} (g),Y\rangle\), \(\langle X_2,\text{Ad} (g),Y\rangle)\): \(g\in G\}\). The convexity of \(W_Y(X_1,X_2)\) is proved via Aityah’s lemma on compact connected symplectic manifolds and Kirillov-Kostant-Souriau symplectic structure of the co-adjoint orbits of a Lie group. Moreover, convexity is proved for classical groups as \(SO(n)\), \(SU(n)\) and \(Sp(n)\), though it fails to be true with \(G=O(2n)\), but remains valid when \(G=O(2n+1)\).

MSC:

15A60 Norms of matrices, numerical range, applications of functional analysis to matrix theory
22E60 Lie algebras of Lie groups

Citations:

Zbl 0303.47001
Full Text: DOI

References:

[1] DOI: 10.1080/03081087508817074 · Zbl 0303.47001 · doi:10.1080/03081087508817074
[2] DOI: 10.1007/BF01398933 · Zbl 0503.58017 · doi:10.1007/BF01398933
[3] DOI: 10.1080/03081089708818518 · Zbl 0894.22003 · doi:10.1080/03081089708818518
[4] DOI: 10.2307/2372843 · Zbl 0101.39702 · doi:10.2307/2372843
[5] Bonsall, Numerical ranges of operators on normed spaces and elements of normed algebras (1971) · Zbl 0207.44802 · doi:10.1017/CBO9781107359895
[6] Audin, The topology of torus actions on symplectic manifolds (1991) · Zbl 0726.57029 · doi:10.1007/978-3-0348-7221-8
[7] DOI: 10.1080/03081088408817574 · Zbl 0533.15018 · doi:10.1080/03081088408817574
[8] DOI: 10.2307/2044904 · Zbl 0525.47002 · doi:10.2307/2044904
[9] Au-Yeung, Southeast Asian Bull. Math. 3 pp 85– (1979)
[10] Atiyah, Philos. Trans. Roy. Soc. London Ser. 14 pp 523– (1982)
[11] DOI: 10.1112/blms/14.1.1 · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[12] DOI: 10.1080/03081088008817347 · Zbl 0438.15023 · doi:10.1080/03081088008817347
[13] DOI: 10.1080/03081089408818312 · Zbl 0814.15022 · doi:10.1080/03081089408818312
[14] Knapp, Lie groups beyond an introduction (1996) · Zbl 0862.22006 · doi:10.1007/978-1-4757-2453-0
[15] DOI: 10.1007/BF01388838 · Zbl 0561.58016 · doi:10.1007/BF01388838
[16] Kirillov, Elements of the theory of representations (1976) · Zbl 0342.22001 · doi:10.1007/978-3-642-66243-0
[17] DOI: 10.1007/BF01292610 · JFM 47.0088.02 · doi:10.1007/BF01292610
[18] Gustafson, Numerical range: the field of values of linear operators and matrices (1997)
[19] DOI: 10.1007/BF01388837 · Zbl 0561.58015 · doi:10.1007/BF01388837
[20] DOI: 10.1007/BF01212904 · JFM 46.0157.02 · doi:10.1007/BF01212904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.